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Abstract

This paper studies how to identify strategies for mitigating cyber-infrastructure vulnera-
bilities. We propose an optimization framework that prioritizes the investment in security
mitigations to maximize the coverage of vulnerabilities. We use multiple coverage to reflect
the implementation of a layered defense, and we consider the possibility of coverage failure to
address the uncertainty in the effectiveness of some mitigations. Budgeted maximum multiple
coverage (BMMC) problems are formulated, and we demonstrate that the problems are submod-
ular maximization problems subject to a knapsack constraint. Other variants of the problem
are formulated given different possible requirements for selecting mitigations, including unit
cost cardinality constraints and group cardinality constraints. We design greedy approximation
algorithms for identifying near-optimal solutions to the models. We demonstrate an optimal
(1 − 1/e)-approximation ratio for BMMC and a variation of BMMC that considers the possi-
bility of coverage failure, and a 1/2-approximation ratio for a variation of BMMC that uses a
cardinality constraint and group cardinality constraints. The computational study suggests that
our models yield robust solutions that use a layered defense and provide an effective mechanism
to hedge against the risk of possible coverage failure. We also find that the approximation algo-
rithms efficiently identify near-optimal solutions, and that a Benders branch-and-cut algorithm
we propose can find provably optimal solutions to the vast majority of our test instances within
an hour for the variations of the proposed models that consider coverage failures.

Keywords: cyber-security; submodular optimization; coverage models; critical infrastructure pro-
tection

1 Introduction

The information systems in the United States rely on a fragile information technology (IT) infras-

tructure that is vulnerable to numerous security risks. According to a U.S. Government Account-
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ability Office (GAO) report, threats to the federal IT supply chains include installation of counterfeit

hardware or software, disruption in the production or distribution of a critical product, reliance on

malicious or unqualified service providers, and poorly trained employees [1]. Recently, reports from

various governing agencies have expressed similar concerns, highlighting the importance of enhanc-

ing the security of cyber-infrastructure and the federal IT supply chain. The Director of National

Intelligence listed managing the “enormous vulnerabilities within the IT supply chain” as one of the

U.S.’s top two cybersecurity challenges [2]. Several U.S. GAO reports echo this sentiment [1, 3, 4].

The White House proposed new policy directives for securing critical IT physical assets, signaling

growing awareness of the increasing role of cybersecurity in critical infrastructure [5–7]. The White

House has also started to direct federal funding toward global supply chain risk management [8].

These reports underscore the need to invest in security mitigations that can enhance the security

of cyber-infrastructure and the federal IT supply chain in a cost-effective manner.

An effective way to improve the trustworthiness of the federal IT infrastructure is to deploy security

mitigations to reduce vulnerabilities in the supply chain life cycle [9]. Cybersecurity mitigations

are countermeasures implemented by the decision maker to proactively protect the system against

attacks. Examples of cybersecurity mitigations include replacing vulnerable physical components

of the IT infrastructure, requiring suppliers to provide tamper protection for certain hardware com-

ponents, establishing and implementing access control procedures, storing sensitive information at

alternative sites, and improving security training for employees. Mitigations “cover” vulnerabilities

in the system by increasing the difficulty of attacks or reducing their consequences. Some miti-

gations may work in similar ways and may cover the same vulnerabilities. Federal organizations

have limited budgets for deploying mitigations. Although efforts have been made toward assessing

cybersecurity risks to the U.S. [5,6], comprehensive security policies and mitigations have not been

developed and implemented [4]. The uncertainty in mitigation effectiveness and the interplay be-

tween different mitigations make it very challenging to determine which combination of mitigations

yields the maximum benefit given a limited budget.

Recently, the National Institute of Standards and Technology (NIST) published supply chain risk

management practices for improving the security of federal information systems and organiza-

tions [10]. NIST proposes a threat scenario analysis framework that identifies vulnerabilities and

mitigations to address them. They demonstrate how this generic framework has practical applica-

tions, including telecommunications counterfeiting and industrial espionage. The NIST framework
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provides decision makers with cost-effective strategies for risk reduction. Given the considerable

risks associated with federal information systems, NIST suggests that decision makers manage sup-

ply chain risk with a more structured approach that uses well-defined goals and scope to represent

threat scenarios.

In this paper, we address the critical challenge of structured supply chain risk management by

proposing an optimization framework for implementing security mitigations to cover supply chain

vulnerabilities. This optimization framework supports a formal supply chain risk assessment frame-

work by prescribing procedures that can reduce risk. We are motivated by a federal planning prob-

lem in which trustworthy computing processes are designed for a long-term phased rollout [11,12].

In this paper, we do not consider real-time decisions for intrusion detection, response protocols

for security incidents, or acquisition decisions. The results of this paper are of interest to federal

decision makers responsible for managing policies and investments in IT supply chain security.

We propose and study new models that account for the effect of multiple coverage and the possi-

bility of coverage failure. The first of these is a model for the deterministic budgeted maximum

multiple coverage problem (BMMC). The multiple coverage feature of this model provides an incen-

tive to implement complementary mitigations to reduce vulnerability. We extend this model to the

expected-value budgeted maximum multiple coverage problem (EBMMC). This model seeks a set of

mitigations under the same conditions as BMMC while considering uncertainty in mitigation effec-

tiveness. Such uncertainties can arise if the effectiveness of mitigations relies on historical evidence

or the judgment of subject matter experts (SMEs). Additionally, we consider model variations with

other restrictions on mitigation selection, such as limiting decision makers to choosing no more than

one mitigation from each of a number of pre-specified groups (group cardinality constraints). We

demonstrate that the proposed models are submodular maximization problems subject to a linear

or matroid constraint. We propose approximation algorithms for identifying near-optimal solutions

to the models. The algorithms use a number of objective function evaluations that is polynomial

in the number of available mitigations. We also propose a Benders branch-and-cut algorithm for

exactly solving the expected-value version of this problem.

At present, there are few optimization models that study cybersecurity risk mitigation using strate-

gic planning or investment. Leskovec et al. present an optimization model for cost-effective detection

of outbreaks in networks [13]. The model has applications to detecting the spread of contaminants

in a physical network or malicious ideas in a social network. Afful-Dadzie and Allen propose a
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Markov decision process model to manage data-driven maintenance policies for IT network secu-

rity when data are scarce [14]. Zhuo and Solak propose a stochastic programming model to optimize

a firm’s cybersecurity budget in an investment portfolio [15]. Their model addresses uncertainty in

the effectiveness of the countermeasures. Nagurney et al. propose game theoretic models to manage

vulnerability in electronic Internet transactions [16]. In this model, retailers attempt to maximize

their profits by determining the security of transactions and the product. Meanwhile, consumers

adjust the price they are willing to pay for the product based on demand and supply chain security.

In a more recent paper, Nagurney and Shukla [17] propose both competitive and cooperative game

theoretic models to investigate the value of information sharing for firms.

The models proposed in this paper generalize the maximum coverage problem, where k facilities

are located to maximize the overall coverage of the facilities [18]. Coverage models are applicable

to a wide variety of problems, including allocation of emergency response resources [19, 20]. They

are also relevant to homeland security applications; for example, coverage models have been used

to optimally screen checked baggage on commercial aviation flights [21, 22]. A comprehensive

study of coverage models and their applications can be found in Daskin [23]. The maximum

coverage problem is NP-hard and is an instance of monotone submodular maximization subject to

a cardinality constraint. Nemhauser et al. show that a greedy heuristic achieves an approximation

ratio of (1− 1/e) for this class of problems [24]. The budgeted maximum coverage problem (BMC)

generalizes the maximum coverage problem by replacing the cardinality constraint with a knapsack

constraint. Khuller et al. show that a greedy heuristic achieves an approximation ratio of (1−1/
√
e)

[25]. This can be improved to an optimal (1 − 1/e)-approximation ratio by incorporating the

greedy heuristic into a partial enumeration scheme. Sviridenko generalizes these results to any

submodular maximization problem subject to a knapsack constraint [26]. Fisher et al. show that a

greedy heuristic achieves an approximation ratio of 1/2 when maximizing a monotone submodular

set function subject to a matroid constraint [27]. This result is improved to an optimal (1− 1/e)-

approximation factor by Vondrak [28] and Calinescu et al. [29] by adapting a continuous greedy

algorithm and a pipage rounding procedure [30]. Two recent papers by Badanidiyuru and Vondrak

[31] and Buchbinder et al. [32] propose faster algorithms with similar approximation ratios. For

the study of approximation algorithms for general submodular maximization subject to multiple

knapsack constraints, we refer the readers to Kulik et al. [33].

In summary, this paper makes the following contributions:
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1. We propose new coverage models, BMMC and EBMMC, for selecting an optimal portfolio of

security mitigations to reduce threat vulnerability. These models facilitate a layered defense

of cyber-infrastructure and federal IT supply chains. EBMMC addresses the uncertainty of

mitigation effectiveness.

2. We demonstrate that the proposed coverage models are submodular maximization problems

subject to a knapsack constraint. We formulate variants of BMMC and EBMMC and demon-

strate that these models are also specific instances of submodular maximization problems.

3. We present polynomial-time heuristics for identifying near-optimal solutions to the proposed

models. We demonstrate an optimal (1− 1/e)-approximation ratio for BMMC and EBMMC

and a 1/2-approximation ratio for the BMMC and EBMMC variants that incorporate a

cardinality constraint and group cardinality constraints. We also propose a Benders branch-

and-cut algorithm for solving the expected-value versions of the proposed models.

4. We perform a computational study to compare the solutions and runtimes of approximation

algorithms to methods for solving the proposed methods to optimality. The greedy heuristics

identify near-optimal solutions quickly. On the other hand, the proposed Benders branch-and-

cut is also able to solve large instances of the expected-value problem to optimality, providing

an option for modelers wishing to solve the proposed models exactly. We demonstrate the

practical value of the models by comparing their effectiveness in cases where vulnerabilities

can be covered multiple times or mitigations could fail.

5. We discuss how to modify the approximation algorithms to produce a set of naturally “nested”

solutions that can be used by decision makers to weigh the trade-offs between cost and

vulnerability reduction. This set of solutions can be efficiently generated.

This paper is organized as follows. We define the problems and their mixed-integer linear pro-

gramming (MIP) formulations in Section 2. In Section 3, we show that all of the problems are

monotone submodular maximization problems subject to a linear or matroid constraint. We in-

troduce polynomial-time algorithms with constant approximation ratios. In Section 4, we propose

a Benders branch-and-cut algorithm for solving the stochastic versions of the formulations. In

Section 5, we conduct a numerical study to test the practical efficiency and solution quality of the

proposed algorithms. Section 6 concludes the paper.
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2 Problem description

In this section, we introduce several optimization models for prioritizing mitigations to protect

IT supply chains. Cyber-attacks exploit vulnerable components of the supply chain network. We

explicitly consider the steps taken to carry out a complete attack on system vulnerabilities. Accord-

ingly, we formulate attacks as “attack paths,” each of which contains multiple nodes representing

vulnerabilities. We do not consider the sequence of steps (nodes) on a path to be important. We

instead focus on preventing the success of each attack when considered as an entire attack path.

We also assume different attack paths may contain the same vulnerability. For example, hardware

may contain a vulnerability that can be exploited in a variety of ways.

Attack modeling is an important first step of our problem. In traditional cyber-vulnerability anal-

ysis, threats are modeled using attack trees. Introduced by Schneier [34] and formalized by Mauw

and Oostdijk [35], attack trees are used to characterize the possible attacks against a system and

identify protections against such attacks. A node of an attack tree represents the event of an attack,

and an arc represents the transition of states after a step of an attack occurs. The root node rep-

resents the target of the attack. Each path in the tree from a leaf node to the root node defines an

attack path. The level of aggregation and exact construction of an attack tree depends on the scope

of the risk analysis conducted by the SMEs [11]. An attack path is often constructed manually

based on SME knowledge of the attack profiles. This process is tedious and error-prone [12]. As

such, methods for automatically generating attack trees have been explored (e.g., [36]). We refer

the readers to Shostack for a recent survey on attack modeling and for examples of attack trees

and mitigations [37].

In our models, we assume the set of attacks paths is enumerated and given as a complete list.

Although the number of attack paths may be very large in general, many classes of IT attacks must

be carried out in very specific ways, resulting in a manageable number of enumerated paths. Work

with collaborators at Sandia National Laboratory (SNL) suggests that this assumption is reasonable

for our application, as the sizes of the attack trees are expected to be moderate. Given a ground

set of vulnerability nodes, each attack path consists of the subset of nodes necessary to successfully

complete an attack. Mitigations “cover” vulnerability nodes, which in turn cover a portion of the

associated attack paths. Multiple coverage is accomplished by covering multiple different nodes

in an attack path. This coverage structure, representing a layered defense, is motivated by our
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discussion with collaborators at SNL. In addition, we assume that coverage is nondecreasing with

respect to the number of nodes covered on an attack path. In essence, the system cannot be

made more vulnerable by covering additional nodes. We also assume the marginal improvement in

coverage decreases with the number of nodes covered on an attack path. Mitigations provide more

marginal improvement to overall security when other vulnerabilities on the same attack path are

not covered by other mitigations.

We focus on optimal ways to cover vulnerabilities in the attack paths by deploying security miti-

gations in a layered defense. To this end, we present two types of models: a deterministic model

that assumes the mitigation coverage is always effective and a stochastic model that allows for

uncertainty in mitigation effectiveness. We also consider variations of these models. These variants

consider constraints that limit decision makers to selecting only one mitigation each from a number

of mitigation groups.

2.1 Deterministic models

Let S denote the set of attack paths and let N denote the set of vulnerabilities (nodes). Let Ns ⊆ N

denote the subset of vulnerabilities in attack path s ∈ S. Let cn ∈ R+ represent the criticality of

vulnerability n ∈ N . A higher weight cn corresponds to a more important vulnerability. We use

these critical vulnerability levels to quantify the coverage of each attack path. Let M denote the

set of available mitigations, and let Mn ⊆M denote the set of mitigations that cover vulnerability

node n ∈ N . Let B ∈ R+ be the total mitigation budget. Each mitigation m ∈ M has an

implementation cost bm ≤ B. In many situations, much of this underlying data may be collected

from SMEs who have knowledge of the underlying processes, possible mitigations, and mitigation

effectiveness [12,38].

Let variable xm be 1 if mitigation m ∈ M is chosen, and 0 otherwise. Let zn be 1 if node n ∈ N

is covered by a mitigation, and 0 otherwise. Let ys be the number of vulnerability nodes in attack

path s ∈ S that are covered, weighted by criticality level. Specifically, ys =
∑

n∈Ns
cnzn. We

introduce a function fs(ys), s ∈ S that captures the coverage of attack path s ∈ S with respect

to ys. By assumption, fs(·) is nondecreasing and concave in ys for each s ∈ S. Note that fs(·)

might not be identical across all attack paths s ∈ S, since it can reflect the likelihood of an attack

occurring and the perceived consequence of the attack.
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The budgeted maximum multiple coverage problem (BMMC) is formulated as a mixed-integer

programming model:

max
x,y,z

∑
s∈S

fs(ys) (1a)

s.t.
∑
m∈M

bmxm ≤ B (1b)

ys =
∑
n∈Ns

cnzn, s ∈ S (1c)

zn ≤
∑
m∈Mn

xm, n ∈ N (1d)

xm ∈ {0, 1}, m ∈M (1e)

zn ∈ {0, 1}, n ∈ N. (1f)

The objective (1a) is to maximize the total coverage over all attack paths. (1b) is the budget

constraint. Constraint family (1c) defines ys as the weighted number of nodes covered in attack

path s ∈ S. Constraints (1d) ensure that a node is covered when at least one mitigation covering it

is selected. The parameters of BMMC can be obtained from SMEs and risk analysts. The coverage

function is determined by decision makers depending on the anatomy of each attack. For example,

some attack paths may vary in severity or likelihood.

BMMC is NP-hard since it generalizes the budgeted maximum coverage (BMC) problem, a known

NP-hard problem [25]. This occurs when each attack path is composed of a single unique node

(|N | = |S| and Ns = {s} for all s ∈ S), and there is single coverage (fs(0) = 0 and fs(1) = 1 for all

s ∈ S).

2.2 Stochastic models

The deterministic model makes the assumption that mitigation coverage is always effective. How-

ever, cyber-threats are dynamic and persistent. Therefore, past information on mitigation controls

is often incomplete, inaccurate, and not predictive of future mitigation efforts. One of our goals

is to identify a set of mitigations that maximizes expected coverage given coverage uncertainty.

Therefore, we consider the possibility that mitigations could be ineffective. Let ξ be a random

vector on the probability space (Ω,Σ,P) such that ξ : Ω → {0, 1}|M |×|N |. ξmn equals 1 if the cov-
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erage of mitigation m ∈ M is effective on node n ∈ N , and 0 otherwise. The total coverage of

the attack paths depends on the selected mitigations x and the random variable ξ, and is denoted

by f(x, ξ). We are interested in improving the overall security of the system with respect to cov-

erage uncertainty. Hence, we formulate a model to maximize the expected coverage Eξ[f(x, ξ)].

The expected-value budgeted maximum multiple coverage problem (EBMMC) is formulated as the

following two-stage stochastic mixed-integer programming model:

max
x

Eξ[f(x, ξ)] (2a)

s.t.
∑
m∈M

bmxm ≤ B (2b)

xm ∈ {0, 1}, m ∈M, (2c)

where

f(x, ξ) = max
y,z

∑
s∈S

fs(ys) (3a)

s.t. ys =
∑
n∈Ns

cnzn, s ∈ S (3b)

zn ≤
∑
m∈Mn

ξmnxm, n ∈ N (3c)

zn ∈ {0, 1}, n ∈ N. (3d)

The objective (2a) of EBMMC is to maximize the expected value of total coverage across all attack

paths. The recourse problem (3) evaluates the coverage of a solution x for a given realization ξ of

the random variable ξ. The realization of the random variable ξ appears in the multiple coverage

constraints (3c). Its presence ensures that a node cannot be considered covered if no effective

mitigations covers it. EBMMC introduces an incentive to select two mitigations that cover the same

node if that node is critical and the mitigations covering that node may be ineffective. EBMMC is

NP-hard, because it generalizes BMMC.

If {ξ ∈ {0, 1}|M |×|N | : P(ξ = ξ) > 0} is too large of a set, a deterministic equivalent formulation

of (2) is intractable. One way to address this issue is to solve an approximate stochastic problem

using sample average approximation [39]. In sample average approximation, we take a finite set of

samples {ξ1, . . . , ξK} of ξ. We then approximate the expected value function with a sample average
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function:

Eξ[f(x, ξ)] ≈ 1

K

K∑
j=1

f(x, ξj).

Given this approximation, we can derive a deterministic equivalent formulation (DEF) of EBMMC.

First, we define coverage variables for each scenario j = 1, . . . ,K. Let zjn be 1 if node n ∈ N is

covered by a mitigation in scenario j = 1, . . . ,K, and 0 otherwise, Let yjs be the weighted number

of nodes in attack path s ∈ S that are covered in scenario j = 1, . . . ,K. The DEF of the sample

average approximation of EBMMC can be formulated as the following mixed-integer programming

model:

max
x,y,z

1

K

K∑
j=1

∑
s∈S

fs(y
j
s) (4a)

s.t.
∑
m∈M

bmxm ≤ B (4b)

yjs =
∑
n∈Ns

cnz
j
n, s ∈ S, j = 1, . . . ,K (4c)

zjn ≤
∑
m∈Mn

ξjmnxm, n ∈ N, j = 1, . . . ,K (4d)

xm ∈ {0, 1}, m ∈M (4e)

zjn ∈ {0, 1}, n ∈ N, j = 1, . . . ,K. (4f)

As the number of sample scenarios K increases, an optimal solution of (4) converges to the op-

timal solution of EBMMC with probability one [39]. In the computational study, we solve the

sample average approximation of EBMMC with large samples to accurately approximate the true

optimal solution to EBMMC. Although we conduct a computational study on the sample average

approximation problem, all the theoretical results associated with the approximation algorithms

in Section 3 apply to EBMMC. Henceforth, any mention of solving a stochastic model refers to

solving the corresponding sample average approximation formulation (e.g., (4) for EBMMC).

We are also interested in the k-cardinality constrained maximum multiple coverage problem (kMMC),

in which the budget constraint is replaced with a cardinality constraint. That is, B := k for

some k ∈ N and bm := 1 for all m ∈ M . Similarly, we consider the k-cardinality constrained

expected-value maximum multiple coverage problem (kEMMC). kEMMC is the stochastic exten-

sion of kMMC.
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The number of variables required to formulate our approximations of EBMMC and kEMMC grows

linearly with the sample size K. We solve formulations with thousands of scenarios to ensure our

solutions approximate the true optimal solutions well. Formulations of this size can be difficult to

solve directly in a reasonable period of time. We thus introduce polynomial-time approximation

algorithms with constant worst-case approximation ratios for solving EBMMC and its variants

in Section 3. Additionally, we propose a Benders based branch-and-cut algorithm to solve (4) in

Section 4.

2.3 Group cardinality models

In real settings, there are often additional requirements for mitigation selection other than a budget

constraint. We consider one such requirement here – group cardinality constraints. Group cardi-

nality constraints, or multiple choice constraints, are motivated by the practical concern that some

mitigations have conflicting effects and cannot be implemented together. For example, a mitiga-

tion for replacing an untrustworthy vendor and a mitigation for improving this vendor’s security

procedure cannot both be selected.

Let M1,M2, . . .M` be a partition of the mitigation set M , where ∪`i=1Mi = M and Mi ∩Mj = ∅

for all distinct i, j ∈ {1, . . . , `}. Group cardinality constraints stipulate that no more than one

mitigation can be selected from partition group Mi (i = 1, . . . , `). The constraints are written as

follows: ∑
m∈Mi

xm ≤ 1, i = 1, . . . , `. (5)

The k-cardinality constrained expected-value maximum multiple coverage problem with group car-

dinality constraints (kEMMCG) can be modeled as an integer programming model that maximizes

expected coverage (2a) subject to (3b)–(3d), (5), and the k-cardinality constraint (6):

∑
m∈M

xm ≤ k. (6)

We also introduce the deterministic variant of kEMMCG, the k-cardinality maximum multiple

coverage problem with group cardinality constraints (kMMCG). kMMCG can be considered as

kEMMCG without coverage uncertainty. Both kMMCG and kEMMCG generalize the cardinality-

constrained maximum coverage problem with group cardinality constraints [40]. In the next section,
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we show that a greedy heuristic achieves a 1/2-approximation ratio for not only kEMMCG, but

any nondecreasing submodular maximization problem with a cardinality constraint and group

cardinality constraints.

3 Approximation algorithms

In this section, we present polynomial-time approximation algorithms for the models of Section 2.

We prove constant worst-case approximation ratios for the algorithms. The proofs presented in

Section 3.1 are associated with EBMMC. We also show that they can be easily adapted for BMMC,

kEMMC and kMMC. In Section 3.2, we present a greedy heuristic for kMMCG and kEMMCG.

3.1 EBMMC and variants

We first define a submodular function.

Definition 1. Let A1, A2 ⊆ N and A1 ⊆ A2. A set function g(·) is submodular if, for any

a ∈ N \A2, g(A1 ∪ {a})− g(A1) ≥ g(A2 ∪ {a})− g(A2).

Let χA ∈ {0, 1}|M | be the characteristic vector of a set A ⊆ M , where χAm = 1 if m ∈ A, and 0

otherwise. We define the set function g(·) : 2M → R as follows:

g(A) = Eξ[f(χA, ξ)]. (7)

With function (7), we can reformulate EBMMC as maximizing the set function g(·) subject to a

knapsack constraint:

max
A⊆M

{
g(A) :

∑
m∈A

bm ≤ B
}
. (8)

A (1 − 1/e)-approximation ratio can be achieved in polynomial time for any submodular maxi-

mization problem subject to a knapsack constraint [26] or a cardinality constraint [24]. In the

following theorem, we show that EBMMC can be reformulated as a submodular maximization

problem subject to a knapsack constraint.

Theorem 2. EBMMC is a nondecreasing submodular maximization problem subject to a knapsack

constraint.
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Proof. Consider two sets A1, A2 ⊆ M satisfying A1 ⊆ A2. Let m ∈ M \ A2. It suffices to show

g(A2) ≥ g(A1) and g(A1 ∪ {m})− g(A1) ≥ g(A2 ∪ {m})− g(A2).

We first show that for fixed uncertainty effectiveness ξ ∈ {0, 1}|M |×|N |, it holds that f(χA2 , ξ) ≥

f(χA1 , ξ) and f(χA1∪{m}, ξ)− f(χA1 , ξ) ≥ f(χA2∪{m}, ξ)− f(χA2 , ξ). f(χA, ξ) is the total coverage

with respect to ξ when a set of mitigations A ⊆ M is selected. Let yAs be the weighted number of

nodes covered on attack path s ∈ S when A is selected. We have f(χA, ξ) =
∑

s∈S fs(y
A
s ). Since

fs(·) is nondecreasing, we have fs(y
A2
s )− fs(yA1

s ) ≥ 0, implying

f(χA2 , ξ) ≥ f(χA1 , ξ). (9)

For the same reason, we have fs(y
A1∪{m}
s ) − fs(y

A1
s ) ≥ 0 and fs(y

A2∪{m}
s ) − fs(y

A2
s ) ≥ 0. Be-

cause fs(·) is concave, the marginal increase of the objective value is nonincreasing. Therefore,

fs(y
A1∪{m}
s )− fs(yA1

s ) ≥ fs(yA2∪{m}
s )− fs(yA2

s ). It follows that

f(χA1∪{m}, ξ)− f(χA1 , ξ) ≥ f(χA2∪{m}, ξ)− f(χA2 , ξ). (10)

By definition, g(A) = Eξ[f(χA, ξ)]. Taking the expected value with respect to ξ on both sides of

inequalities (9) and (10) yields g(A2) ≥ g(A1) and g(A1 ∪ {m})− g(A1) ≥ g(A2 ∪ {m})− g(A2), as

desired.

Corollary 3. kEMMC and kMMC are submodular maximization problems subject to a cardinality

constraint.

Theorem 2 allows us to apply well-known results to our model. We show how to adapt the two

approximation algorithms in Khuller et al. [25] to EBMMC to achieve (1− 1/e)- and (1− 1/
√
e)-

approximation ratios for kEMMC and EBMMC, respectively. Let b(A) :=
∑

m∈A bm be the total

cost of selecting mitigations A ⊆M , and let ∆gm(A) := g(A∪{m})−g(A) be the marginal increase

of the objective value when m ∈M is added to A.

Given a current solution A and a set of available mitigations T , the greedy algorithm Greedy

selects a budget-feasible mitigation with the largest ratio ∆gm(A)/bm in each iteration until no

more mitigations can be selected. Greedy achieves an optimal (1− 1/e)-approximation ratio for

kEMMC and kMMC [24]. This is the best possible approximation ratio unless P = NP [41].
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Algorithm: Greedy(A, T )

1 while T 6= ∅ do
2 Compute ∆gm(A) for all m ∈ T
3 Compute m∗ ∈ argmaxm∈T {∆gm(A)/bm}
4 if b(A ∪ {m∗}) ≤ B then
5 A← A ∪ {m∗}
6 T ← T \ {j ∈ T : b(A ∪ {j}) > B}
7 return A

Greedy(A, T ) computes ∆gm(A) for all m ∈ T , which is potentially a large number of computa-

tions. This computational time can be improved by reducing the number of evaluations considered

in line 2 of Greedy using the “lazy evaluations” procedure proposed by Leskovec et al. [13]. This

procedure exploits submodularity by computing ∆gm(A)/bm for the available mitigations in de-

creasing order based on the previous iteration that led to the selection of mitigation m∗. The

procedure terminates when a new value of ∆gm(A)/bm is greater than all such values from the pre-

vious iteration. The correctness of this procedure follows from submodularity, since ∆gm(A)/bm

can never increase as the set of selected mitigations A grows. The procedure of Leskovec et al. can

drastically reduce the number of computations in line 2 of Greedy. However, it does not change

the worst-case time complexity.

Algorithm 1 is the first approximation algorithm for EBMMC and BMMC. It selects the better

of a greedy solution and the single best mitigation. Algorithm 1 has an approximation ratio of

(1− 1/
√
e) for EBMMC and BMMC and requires O(|M |2) objective function evaluations.

Algorithm 1: Construct approximate solution to BMMC/EBMMC

1 A← ∅, T ←M
2 A← Greedy(A, T )
3 Compute m∗ ∈ argmaxm∈T {g({m})}
4 if g(A) ≥ g({m∗}) then
5 return A
6 else
7 return {m∗}

Greedy and Algorithm 1 can provide insight when the total budget is not available all at once

and instead becomes available over time [42]. First, consider the cardinality-constrained problems

kEMMC and kMMC. Each time the budget increases by one unit, Greedy selects the mitigation

providing the best marginal increase in objective function value. If we run Greedy until all
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mitigations are selected, we obtain a set of naturally nested solutions, each of which approximates

the problem with a constant factor (1 − 1/e). Therefore, the algorithm provides a prioritized list

of mitigations to decision makers [43]. For any k ∈ N, the set of k mitigations selected by Greedy

form a naturally nested set.

The nested solution obtained from Greedy is not maintained for EBMMC and BMMC. In these

cases, mitigation costs are not identical. As such, a different set of mitigations may be selected by

Greedy for different values of the budget. However, Algorithm 1 can be adapted to construct a

set of solutions that approximate the efficient frontier between coverage and cost, thus yielding a

set of “good” solutions useful for comparing trade-offs between competing objectives. This can be

achieved using Algorithm 1 by setting B :=
∑

m∈M bm and saving the solution, objective function

value, and total mitigation cost after each mitigation is added. This set of solutions is naturally

nested. Moreover, it can serve as a warm start for finding a set of mitigations at any intermediate

budget level. Specifically, if the lists of solution and budget values are {A1, A2, . . . , A|M |} and

{B1, B2, . . . , B|M |}, respectively, and we are given intermediate budget value B with Bi < B <

Bi+1, we can run Algorithm 1 by changing line 1 to initialize A← Ai, T ←M \Ai, and B ← B−Bi.

Algorithm 2 uses Greedy in a partial enumeration scheme to achieve an approximation ratio

of (1 − 1/e) for BMMC and EBMMC [26]. This algorithm requires O(|M |5) objective function

evaluations, making it less efficient than Algorithm 1.

Algorithm 2: Construct approximate solution to BMMC/EBMMC (partial enumeration)

1 A∗ ← ∅, q ← 3
2 for A ⊆M s.t. |A| < q and b(A) ≤ B do
3 if g(A) > g(A∗) then
4 A∗ ← A

5 for A ⊆M s.t. |A| = q and b(A) ≤ B do
6 W ← Greedy(A, M \A)
7 if g(W ) > g(A∗) then
8 A∗ ←W

9 return A∗

In Section 5, we compare the solution quality and computational times of Algorithms 1 and 2.
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3.2 A greedy heuristic for group cardinality models

We present a modified greedy algorithm that accounts for group cardinality constraints, and we

demonstrate that it achieves a 1/2-approximation ratio for kEMMCG and kMMCG.

Using the set function g(·) defined for EBMMC, we reformulate kEMMCG as follows:

max
A⊆M

{g(A) : |A| ≤ k, |A ∩Mi| ≤ 1, i = 1, . . . , `}. (11)

Without loss of generality, we assume g(∅) = 0. We also assume ` > k. If not, the k-cardinality con-

straint is redundant. kEMMCG formulation (11) maximizes a nondecreasing submodular set func-

tion subject to a uniform matroid constraint and a partition matroid constraint, the combination

of which is equivalent to a truncated partition matroid constraint. A truncated partition matroid

is a matroid. Fisher et al. [27] demonstrate that a greedy heuristic achieves a 1/2-approximation

ratio for maximizing a monotone submodular set function subject to a matroid constraint. Chekuri

and Kumar present a greedy heuristic with a 1/2-approximation ratio for solving the maximum

coverage problem subject to a cardinality constraint and group cardinality constraints (a special

case of kEMMCG) [40]. Their analysis is based on the multiple knapsack problem. Using a similar

analysis, we show that the greedy heuristic of Chekuri and Kumar can be adapted to the general

monotone submodular maximization problem subject to a cardinality constraint and group cardi-

nality constraints, of which kEMMCG is an instance. The adapted algorithm achieves the same

approximation ratio of 1/2.

Recall ∆gm(A) = g(A∪{m})−g(A) is the marginal increase in objective value when m is added to

A ⊆M . Algorithm 3 iteratively selects the mitigation that provides the most marginal improvement

in objective value. However, it considers mitigations only from those groups from which a mitigation

has not already been selected. For all m ∈ M , let I(m) ∈ {1, . . . , `} satisfy m ∈ MI(m). That is,

I(m) indexes the unique group to which m belongs

Algorithm 3 requires O(k|M |) objective function evaluations. We present the following theorem to

demonstrate that Algorithm 3 obtains a 1/2-approximation ratio for kEMMCG and kMMCG. The

result is proven for the general monotone submodular maximization problem subject to a cardinality

constraint and group cardinality constraints. Note that this result matches the approximation ratio

in Fisher [27] for monotone submodular maximization subject to a matroid constraint.
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Algorithm 3: Construct approximate solution to kMMCG/kEMMCG

1 A← ∅, T ←M
2 while |A| < k do
3 Compute ∆gm(A) for all m ∈ T
4 Compute m∗ ∈ argmaxm∈T ∆gm(A)
5 A← A ∪ {m∗}
6 T ← T \MI(m∗)

7 return A

Theorem 4. Algorithm 3 achieves an approximation ratio of 1/2 for maximizing a monotone

submodular function subject to a cardinality constraint and group cardinality constraints.

Proof. We consider the submodular maximization problem (11) for a general monotone submodular

function g.

Observe Algorithm 3 runs for k < ` iterations and returns a set of mitigations A ⊆ M . Without

loss of generality, assume the partition M1, . . . ,M` is ordered such that the mitigation mj selected

by Algorithm 3 in iteration j is an element of Mj , j = 1, . . . , k. In this ordering, Algorithm 3

selects no mitigation from groups Mk+1, . . . ,M`. For j = 1, . . . , k, let Aj := ∪ji=1{mi}. Observe

Ak = A, and let A0 := ∅. Let A∗ = {m∗1, . . . ,m∗k} ⊆M be the optimal solution, indexed such that

I(m∗j ) ≥ j for j = 1, . . . k. That is, mitigation m∗j was a candidate for selection in iteration j of

Algorithm 3. Such an indexing trivially exists.

In each iteration j = 1, . . . , k of Algorithm 3, we select the mitigation that has the largest marginal

increase in objective value with respect to the previously selected mitigations Aj−1. It follows that

g(Aj)− g(Aj−1) ≥ g(Aj−1 ∪ {m∗j})− g(Aj−1) j = 1, . . . , k.

Because Aj ⊆ A for all j = 1, . . . , k and g(·) is a nondecreasing submodular set function, we have

g(Aj)− g(Aj−1) ≥ g(A ∪ {m∗j})− g(A) j = 1, . . . , k. (12)

Summing both sides of (12) over all groups yields

g(A) =
k∑
j=1

[g(Aj)− g(Aj−1)] ≥
k∑
j=1

[g(A ∪ {m∗j})− g(A)]
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≥ g(A ∪A∗)− g(A) (13)

≥ g(A∗)− g(A). (14)

Inequality (13) follows from the fact that g(·) is a submodular set function, so the marginal increase

in g when adding a set A∗ to A is smaller than the sum of the marginal increase in g when adding

each element in A∗ to A individually. Inequality (14) holds because A∗ ⊆ A∗ ∪ A and g(·) is

nondecreasing.

Hence, g(A) ≥ g(A∗)/2.

4 Benders based branch-and-cut algorithm

In this section, we propose a Benders based branch-and-cut algorithm for solving EBMMC. Because

of the presence of nonlinear functions in the recourse problem (3), we use the generalized Benders

decomposition framework [44]. A Benders decomposition algorithm requires continuous second-

stage variables, which is not satisfied by the variables zn (n ∈ N) defined in (3d). However, the

problem in which each zn variable is relaxed to be a continuous variable on the interval [0, 1] is

equivalent. Indeed, for any feasible first-stage solution x and ξ ∈ {0, 1}|M |×|N |, the right-hand side

of (3c) is a nonnegative integer. If this expression equals 0, zn is forced to 0. If this expression is

greater than or equal to 1, the objective value (3a) can only be improved by setting zn equal to

its upper bound of 1, because fs(·) is nondecreasing for all s ∈ S and the weights cn (n ∈ N) are

nonnegative. Thus, we are able to solve EBMMC via a Benders algorithm by considering zn ∈ [0, 1].

The Benders decomposition algorithm is based on the following Benders master problem:

max
x,θ

1

K

K∑
j=1

θj (15a)

s.t.
∑
m∈M

bmxm ≤ B (15b)

θj ≤ f(x̄, ξj) +
∑
n∈N

λ̄n
∑
m∈Mn

ξjmn(xm − x̄m), (x̄, λ̄) ∈ T j , j = 1, . . . ,K (15c)

xm ∈ {0, 1}, m ∈M, (15d)

where f(x, ξj) is the optimal value of the Benders subproblem for scenario j = 1, . . . ,K, as defined
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in (3). The set T j consists of pairs (x̄, λ̄), where x̄ was previously obtained as an optimal feasi-

ble solution to the master problem and λ̄ encodes the optimal dual multipliers corresponding to

constraint (3c) of subproblem (3) solved to evaluate f(x̄, ξj).

Observe (3) has a feasible solution for any first-stage solution x (i.e., it has relatively complete

recourse), because y = 0, z = 0 satisfies (3b)–(3d) for any x ∈ {0, 1}|M |. Since the integrality

restriction (3d) are relaxed, the subproblem (3) is a convex program defined by linear constraints.

Thus, Slater’s condition is satisfied, and strong duality holds. It follows that a generalized Benders

algorithm on EBMMC converges to the optimal solution.

Because the first-stage variables x are binary, Benders decomposition must be implemented within a

branch-and-cut algorithm to solve EBMMC. At each node of the master problem branch-and-bound

tree where an integral first-stage solution x̄ is obtained as an optimal solution to the continuous

relaxation, we solve the EBMMC subproblem f(x̄, ξj) for each scenario j = 1, . . . ,K and obtain

the values of the optimal dual multipliers λ̄jn, n ∈ N corresponding to constraints (3c) of f(x̄, ξj).

Violated Benders cuts of the form (15c) are added to the continuous relaxation of the node and it

is re-solved. If no violated Benders inequalities exist for an integer-feasible solution at a node of

the branch-and-bound tree, the upper bound for the problem is updated, and the node is pruned.

In our experiments presented in Section 5, we implement this Benders algorithm using Gurobi’s

lazy constraint callback.

Following the approach of Bodur et al. [45], we solve the problem in two phases. First, the integrality

restrictions on first-stage variables are removed, and the relaxed master problem is solved. The

subproblems (3) are solved at the relaxed master problem solution for each scenario. Based on the

dual solutions, any violated Benders cuts are added to the relaxed master problem. The relaxed

master problem is solved again and the process repeats. Once no violated Benders cuts are found

for a solution to the relaxed master problem, the integrality restriction on x is re-added. The

model, including the Benders inequalities found in this initial phase, is given to a MIP solver to

commence the branch-and-cut algorithm (where Benders cuts are added when integer solutions are

found, as described in the previous paragraph). The advantage of this approach is that the MIP

solver leverages the initial set of Benders cuts to derive and add its own general-purpose cuts to

the formulation. This yields a stronger continuous relaxation, potentially resulting in more node

pruning and a smaller tree. In our implementation, we initialize this process with x = 0 to prevent

unboundedness in the first iteration’s master problem.
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5 Computational results

This section is divided into three parts, each of which focuses on a particular budgeted coverage

model. Throughout the computational study, we analyze the solutions and performance of ap-

proximation algorithms and exact methods on the proposed models. All implementation was done

with Python 2.7.12. The approximation algorithms were run with PyPy 5.10.0, an alternative

Python compiler. Computational tests were run on a machine with two 2.00GHz Intel Xeon E7-

4850 processors and 256GB RAM. A one-hour time limit was imposed. Models were solved with

Gurobi 7.5.1. Exact algorithms were solved to Gurobi’s default relative optimality gap of 10−4. All

algorithms were limited to a single thread.

As mentioned in Section 2, real data for building instances of our models are scarce or inaccessible.

For this reason, we construct synthetic data of varying sizes in conjunction with our collaborators

at SNL. The data were generated as follows. We randomly sample from the mitigation set M with

replacement to generate the sets Mn (n ∈ N), enforcing |Mn| ≤ 3. Similarly, we set the upper

bound on the number of nodes in each attack path to five and randomly sample from N with

replacement to generate a list of nodes in each attack path Ns, s ∈ S. In practice, there may be

more than five nodes on some attack paths. However, feedback from our collaborators indicate

that this is a reasonable upper bound, since there are relatively few access points for control in the

supply chain attacks under consideration. We set cn = 1 for all n ∈ N , representing a situation

where all nodes are equally vulnerable. We set fs(ys) = −as(ys)2 + 2as|Ns|ys, which is zero when

no nodes in s ∈ S are covered and achieves its maximum value of as|Ns|2 when all |Ns| nodes in

attack path s are covered. The attack path weights as for s ∈ S are generated from a U(0, 10)

distribution. The mitigation costs bm, m ∈M are generated from a U(0, 1) distribution. We create

eight datasets consisting of the set covering data and the multiple coverage data. Each of the eight

generated datasets has a unique size |M |×|N |×|S|, ranging from 20×20×10 to 1000×1000×500.

As it becomes relevant throughout this section, we describe how the additional data was generated.

In general, the coverage models we consider are mixed-integer convex programs, and instances of

the models can be directly solved with mixed-integer convex optimization solvers. Depending on

the structure of fs, s ∈ S, specialized solvers can be used (e.g., each fs is quadratic or second-

order cone representable). However, if cn ∈ Z+ for all n ∈ N , as is the case for the test instances

we consider, then by constraint (1c), the decision variables ys are integer-valued for any feasible
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solution to a particular coverage problem. Thus, we can replace each fs in the nonlinear objective

function (1a) with a concave piecewise linear function, where the piecewise function equals fs(ys)

at each feasible value of ys. To this effect, we add the following set of constraints to the model:

rs ≤ fs(t) + [fs(t+ 1)− fs(t)](ys − t), t = 0, 1, . . . ,
∑
n∈Ns

cn − 1, s ∈ S, (16)

where rs is a new real-valued variable that captures the coverage of path s ∈ S. We then replace

the original objective (1a) with

max
r,x,y,z

∑
s∈S

rs. (17)

The piecewise linearization induced by constraints (16) and the objective (17) does not change

the objective function values at feasible ys (s ∈ S). Therefore, this linearization results in an

equivalent formulation that applies to all models in this paper. If the values of c are large, then it

may not be practical to directly add all constraints of the form (16) to the formulation. Instead,

these inequalities can be implemented as lazy cuts in a branch-and-cut algorithm, where they are

added as needed to the model at integer feasible nodes of the branch-and-bound tree. For the

test instances we consider, we found that the linearized deterministic models solved much faster

than the mixed-integer quadratic programming formulations. Note that if c is not integral, this

linearization does not apply. Instead, inequalities built from the subderivatives of fs at ys can be

added as lazy cuts in a method similar to the branch-and-cut procedure described for the integral

case.

All models were solved with the proposed greedy algorithms. For comparison, deterministic models

(BMMC, kMMC, and kMMCG) were solved using Gurobi’s default branch-and-cut algorithm. This

algorithm is denoted as BNC. Stochastic models (EBMMC and kEMMCG) were solved using two

methods:

• DEF: Use Gurobi’s default branch-and-cut algorithm to solve the DEF (e.g., (4) for EBMMC).

• BEN: Use the Benders branch-and-cut algorithm described in Section 4, implemented with

Gurobi.
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5.1 BMMC solutions

We start by solving BMMC to examine the effect of multiple coverage on mitigation selection.

First, we investigate the potential benefit of (1), BMMC’s multiple coverage formulation. Attack

paths in our problem represent vulnerabilities. In a problem with single coverage (e.g., BMC), the

objective function gives no incentive to cover a path more than once. In the multiple coverage

problems proposed in this paper (e.g., BMMC), each attack path can be covered multiple times

to encourage a layered defense. Attacks can be prevented in several ways by selecting different

mitigations. This results in a more robust approach to cybersecurity planning that reflects the

dynamic nature of security threats [46] more thoroughly than single coverage models.

We compare BMMC solutions with BMC solutions on two of the generated instances to illustrate the

benefit of considering multiple coverage. The formulations of BMC and BMMC are identical except

for the objective function. In our notation, the BMC coverage function is fs(ys) = min{1, ys}.

While we cannot compare these two solutions directly given that the models optimize two different

objective functions, we retrospectively evaluate the BMMC multiple coverage objective function

with the optimal BMC solution.

Figures 1a and 1b show the multiple coverage objective function values associated with the BMMC

and BMC solutions for a variety of budget values. Two problem instances from the generated

dataset are shown. BMMC and BMC solutions perform similarly for low budget levels. As the

budget increases, their performance with respect to the BMMC objective function diverges. Intu-

itively, once the budget becomes large enough that the BMMC objective function warrants covering

some attack paths more than once, BMMC and BMC select different sets of mitigations. The gap

between these two solution approaches represents the value added by considering a multiple cover-

age model.

Next, we test the performance of Algorithms 1 and 2 for solving BMMC on the eight main datasets.

We set B := 0.05
∑

m∈M bm. We compare the performance of these approximation algorithms to

BNC. We also test the algorithms on kMMC using the same dataset by setting bm := 1 (m ∈ M)

and B := 0.1|M |.

Table 1 reports the approximation ratios and computation times of Algorithms 1 and 2 on BMMC

and kMMC instances. The approximation ratio is calculated as the approximate solution’s objective

value divided by the optimal objective value. We were able to obtain optimal solutions to some
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Figure 1: BMMC solution vs. retrospective evaluation of optimal BMC solution for varying budget
levels.

instances by allowing an exact solution algorithm to run longer. In this way, we obtained the

approximation ratios necessary to evaluate the quality of the heuristic solutions. Throughout,

for instances for which the optimal solution was never found but an approximate solution was

obtained, we use an asterisk (*) to signify an unknown approximation ratio. We observe that

Algorithm 1 and BNC performed comparably on all instances except the largest. BNC was unable

to solve either the BMMC or kMMC version of this instance within the one hour time limit,

though Algorithm 1 obtained optimal solutions quickly. Algorithm 1 solved all instances in under 20

seconds and returned heuristic solutions within 2.6% of optimal. Algorithm 2’s partial enumeration

scheme quickly became intractable as the number of possible mitigations grew, resulting in a poor

performance overall. As such, we do not consider Algorithm 2 in the tests that follow. However,

for the few instances it was able to solve, Algorithm 2 obtained the optimal solution.
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(a) BMMC

Approx. ratio Solve time (s)

|M | |N | |S| Alg. 1 Alg. 2 Alg. 1 Alg. 2 BNC

20 20 10 100.00% 100.00% <0.1 <0.1 <0.1
50 50 20 97.43% 100.00% <0.1 0.6 <0.1

100 100 50 98.30% 100.00% <0.1 345.4 0.2
200 200 100 99.06% NA 0.1 >3600 0.4
500 500 200 99.71% NA 0.7 >3600 0.3
600 600 300 99.63% NA 1.6 >3600 1.6
800 800 400 99.35% NA 3.3 >3600 0.8

1000 1000 500 99.89% NA 18.2 >3600 >3600

(b) kMMC

Approx. ratio Solve time (s)

|M | |N | |S| Alg. 1 Alg. 2 Alg. 1 Alg. 2 BNC

20 20 10 100.00% 100.00% <0.1 <0.1 0.2
50 50 20 99.56% 100.00% 0.1 4.3 <0.1

100 100 50 99.80% 100.00% <0.1 388.8 0.1
200 200 100 99.86% NA <0.1 >3600 0.8
500 500 200 99.23% NA 0.4 >3600 4.8
600 600 300 99.42% NA 0.8 >3600 8.8
800 800 400 98.81% NA 1.9 >3600 64.6

1000 1000 500 * NA 9.0 >3600 >3600

Table 1: Performance of Algorithm 1, Algorithm 2, and BNC on BMMC and kMMC instances

To further examine the performance of Algorithm 1, we test it on larger problem instances. For

the set covering data, we use the test instances posted in the online OR-Library [47]. We select five

instances, scpnrg1-scpnrg5, from one of the hardest problem sets [48]. All instances have |M | =

10000, |N | = 1000, and |S| = 500. We generate the remaining data in the same manner described

earlier. We use mitigation budget B := 0.0001
∑

m∈M bm. Table 2 compares the performance of

Algorithm 1 with the standard Gurobi branch-and-cut algorithm. Algorithm 1 solved all of these

larger instances in under seven seconds. The objective values of these heuristic solutions are all

within 1% of the optimal objective value. Gurobi was unable to optimally solve any of the scpnrg

instances within the one hour time limit. We instead report the relative optimality gap obtained

after the one-hour time limit was reached. BNC closed the gap to within 1% on all instances after

one hour.
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Alg. 1 BNC

Instance Approx. ratio Solve time (s) MIP gap

scpnrg1 99.66% 6.5 0.26%
scpnrg2 99.85% 6.5 0.28%
scpnrg3 99.63% 5.8 0.81%
scpnrg4 99.99% 5.7 0.37%
scpnrg5 99.87% 5.8 0.74%

Table 2: Algorithm 1 and BNC performance on BMMC OR-Library instances

As mentioned in Section 3, Algorithm 1 can be used to identify a set of non-dominated solutions

to BMMC that can help decision makers compare the trade-offs of competing objectives. To do

so, we set B :=
∑

m∈M bm and run Algorithm 1 to obtain a list of mitigations {m1,m2, . . . ,mL}

that are selected successively. We use Gurobi to optimally solve the model at the budget level∑j
i=1 bmi for j = 1, . . . , L. We then compare these optimal solutions to the solutions {m1, . . . ,mj}

for j = 1, . . . , L. Figure 2 demonstrates the quality of the nested Algorithm 1 solutions on an

instance from the main dataset. The solutions were obtained by running Algorithm 1 a single

time. At all budget levels, the difference between the optimal solution and Algorithm 1’s solution

is extremely small. The Algorithm 1 solutions are efficient to generate and give decision makers an

overview of trade-offs between cost and vulnerability reduction. However, it is important to note

that the nested property of an Algorithm 1 solution is only maintained when the budget increases

to exactly
∑j

i=1 bmi for j ∈ {1, . . . , L}.
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Figure 2: Naturally nested Algorithm 1 solutions compared to optimal solutions for BMMC at
corresponding budget levels. |M | = 50, |N | = 50, |S| = 20.
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5.2 EBMMC solutions

We examine the impact of uncertainty on mitigation selection by comparing the difference in

node coverage between BMMC and EBMMC solutions. We consider (4), the sample average ap-

proximation EBMMC model. Throughout, we assume that ξ consists of independent and iden-

tically distributed (i.i.d.) Bernoulli random variables with success probability p̄ = 0.5. That is,

P(ξmn = 1) = 0.5 for all m ∈M , n ∈ N . We draw K samples {ξ1, . . . , ξK} from ξ’s distribution.

To demonstrate the differences in solutions when using the stochastic model, EBMMC, instead of

the deterministic model, BMMC, we create a new set of three test instances with |M | = |N | =

|S| = 20. In these instances, each attack path consists of a single node. Each mitigation covers no

more than four nodes. Mitigation costs are selected from {6, 25}. We designate half of the attack

paths s ∈ S as “important” and assign them a weight of as = 10. The remaining attack paths are

weighted by as = 1. We use K = 1000 scenarios for EBMMC and consider a variety of budget

levels.

Table 3 reports the average number of times an attack path is covered across all attack paths and

important attack paths. Since each attack path is composed of a single node, these results indicate

the average number of times a node is covered. While the EBMMC solutions did not provide much

benefit over BMMC in covering all nodes, they covered important nodes far more often on average.

The stochastic model solutions hedge against the risk of coverage failure by selecting mitigations

that cover important attack paths multiple times, as these attack paths contribute significantly

more to the objective function. In BMMC, covering an important node a second time does not

increase the objective function value.
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Average node Average node
coverage (all) coverage (important)

Instance B/
∑

m∈M bm BMMC EBMMC BMMC EBMMC

1 0.2 0.55 1.00 0.85 1.70
0.5 1.10 1.00 1.60 3.10
0.8 1.10 1.00 2.80 3.20

2 0.2 0.55 1.00 0.85 1.70
0.5 1.10 1.10 1.50 2.90
0.8 1.10 1.10 2.50 3.00

3 0.2 0.50 0.90 0.80 1.60
0.5 1.25 1.00 1.35 2.60
0.8 1.05 1.10 2.30 2.70

Table 3: Coverage differences between BMMC and EBMMC solutions

We further demonstrate the value of the stochastic model by examining the performance of EBMMC

and BMMC solutions when uncertain mitigation effectiveness is considered. Figure 3 shows the

objective function values of the BMMC and EBMMC solutions for different budget values on two

instances from the main dataset. We use K = 1000 scenarios. Since the objective function of

BMMC does not include the lost coverage due to random mitigation failure, we can not directly

compare the objective values of EBMMC and BMMC. Instead, we retrospectively evaluate the

expected total objective function values associated with BMMC solutions using the same sample

{ξ1, . . . , ξK} used for EBMMC. Observe the optimal objective value of EBMMC is a nondecreasing

function of the budget. The BMMC retrospective expected-value objective function values do not

increase monotonically. This is because the BMMC solutions overlook the possibility of coverage

failure and do not perform steadily under the scenarios. The gap between the optimal EBMMC

objective value and the EBMMC objective function retrospectively evaluated with an optimal

BMMC solution is the value added by solving the stochastic model.

Next, we test the proposed methods on four EBMMC instances from the datasets. We set B :=

0.05
∑

m∈M bm. We consider five different values of K for each instance. Table 4 reports the

approximation ratio of Algorithm 1, the solve times of Algorithm 1, BEN, and DEF, and the

relative MIP optimality gaps obtained after the one-hour time limit for BEN and DEF. For DEF,

in many cases, the solver was unable to finish solving the root node within the time limit and

thus did not even obtain a feasible solution. In these cases, we list the MIP gap as “na.” In

contrast, Algorithm 1 obtains heuristic solutions to all of the instances within 1200 seconds, and all
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Figure 3: Optimal EBMMC solution vs. retrospective evaluation of optimal BMMC solution for
varying budget levels.

of these solutions are within 1% of optimal. On the other hand, although significantly slower than

Algorithm 1, the Benders branch-and-cut algorithm is able to solve nearly all the test instances

within an hour, indicating that it may be a suitable solution method for decision-makers wishing

to find a provably optimal solution.
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Approx. ratio Solve time (s) MIP gap

|M | |N | |S| K Alg. 1 Alg. 1 BEN DEF BEN DEF

20 20 10 1000 100.00% 0.2 18.9 46.3 0.00% 0.00%
20 20 10 2000 100.00% 0.1 40.1 106.0 0.00% 0.00%
20 20 10 3000 100.00% 0.2 64.7 226.8 0.00% 0.00%
20 20 10 4000 100.00% 0.3 86.9 516.9 0.00% 0.00%
20 20 10 5000 100.00% 0.5 110.4 638.7 0.00% 0.00%
50 50 20 1000 99.95% 1.4 128.1 851.2 0.00% 0.00%
50 50 20 2000 100.00% 3.9 312.0 2899.9 0.00% 0.00%
50 50 20 3000 99.89% 8.3 447.4 >3600 0.00% na
50 50 20 4000 99.85% 8.7 640.4 >3600 0.00% na
50 50 20 5000 99.83% 13.2 677.7 >3600 0.00% na

100 100 50 1000 100.00% 17.1 181.4 1467.0 0.00% 0.00%
100 100 50 2000 100.00% 41.5 410.2 >3600 0.00% na
100 100 50 3000 100.00% 79.1 686.3 >3600 0.00% na
100 100 50 4000 100.00% 104.8 1119.0 >3600 0.00% na
100 100 50 5000 100.00% 136.1 1308.9 >3600 0.00% na
200 200 100 1000 99.69% 202.0 643.3 >3600 0.00% na
200 200 100 2000 99.50% 477.9 1271.1 >3600 0.00% na
200 200 100 3000 99.43% 738.5 2131.3 >3600 0.00% na
200 200 100 4000 99.40% 941.2 3127.7 >3600 0.00% na
200 200 100 5000 99.39% 1166.7 >3600 >3600 0.11% na

Table 4: Comparison of Algorithm 1, directly solving DEF, and Benders branch-and-cut algorith-
mand on EBMMC instances

5.3 Group cardinality model solutions

Finally, we test the performance of Algorithm 3 and the exact methods on kEMMCG and kMMCG.

By Theorem 4, Algorithm 3 achieves a 1/2-approximation ratio for these problems.

We first compare the solutions obtained from Algorithm 3 to BEN and DEF on kEMMCG instances

from the main dataset. We use varying values of ` and k. Given the number of groups `, we

randomly sample from the set of mitigations M without replacement to generate a partition of

mitigations M =
⋃`
i=1Mi. We make each partition group as close in size as possible. We use

k = `/2 and k ≈ `/4, because the cardinality constraint is redundant when k ≥ `. For all

instances, we consider K = 1000 scenarios. The deterministic variant, kMMCG, was easily solved

by Algorithm 3 and BNC across all of our test instances. Hence, we do not report results for

kMMCG on the main dataset.

Table 5 presents the approximation ratio of Algorithm 3, the solve times of Algorithm 3, BEN,
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and DEF, and the relative MIP optimality gaps achieved after the one-hour time limit for BEN

and DEF. For all instances for which we were able to obtain an optimal solution, the solutions

obtained by Algorithm 3 were within 0.6% of optimal, and provided solutions for all instances in

less than 1300 seconds. In terms of exact methods, the MIP solver was only able to solve the DEF

for three of the 18 test instances. BEN was able to solve 12 of the instances, and the maximum

ending MIP gap was 4.12%. Thus, BEN is again clearly a much better option for obtaining an exact

optimal solution than DEF, but it is also clear that Algorithm 3 may be necessary for obtaining

good solutions to the hardest instances.

Approx. ratio Solve time (s) MIP gap

|M | |N | |S| ` k Alg. 3 Alg. 3 BEN DEF BEN DEF

100 100 50 10 3 100.00% 1.3 70.3 1469.1 0.00% 0.00%
100 100 50 10 5 100.00% 2.2 123.9 2833.5 0.00% 0.00%
100 100 50 50 13 100.00% 14.5 944.6 >3600 0.00% na
100 100 50 50 25 99.43% 40.8 >3600 >3600 1.20% na
100 100 50 100 25 100.00% 47.9 785.0 >3600 0.00% na
100 100 50 100 50 100.00% 136.5 637.9 >3600 0.00% na
200 200 100 10 3 100.00% 4.8 78.9 2593.5 0.00% 0.00%
200 200 100 10 5 100.00% 8.0 98.2 >3600 0.00% na
200 200 100 50 13 100.00% 46.0 276.1 >3600 0.00% na
200 200 100 50 25 * 114.0 >3600 >3600 1.10% na
200 200 100 100 25 * 137.2 >3600 >3600 1.67% na
200 200 100 100 50 * 357.0 >3600 >3600 2.68% na
500 500 200 10 3 100.00% 25.9 135.7 >3600 0.00% na
500 500 200 10 5 100.00% 42.8 228.2 >3600 0.00% na
500 500 200 50 13 100.00% 160.8 539.4 >3600 0.00% na
500 500 200 50 25 99.59% 352.3 2045.0 >3600 0.00% na
500 500 200 100 25 99.62% 485.6 >3600 >3600 0.07% na
500 500 200 100 50 * 1232.7 >3600 >3600 4.12% na

Table 5: Comparison of Algorithm 3, BEN, and DEF on kEMMCG instances with varying ` and
k.

Table 6 reports the performance of Algorithm 3 and BNC on the large OR-Library instances. We

generate partitions of M in the aforementioned manner. Algorithm 3 was again able to obtain

near-optimal solutions to all instances in under a minute, while BNC could only solve instances

with the smallest values of `. On instances for which we obtained an optimal solution with BNC,

Algorithm 3’s solutions were within 2.4% of optimal.
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Approx. ratio Solve time (s)

Instance ` k Alg. 3 Alg. 3 BNC

scpnrg1 10 3 99.76% 0.4 27.9
10 5 97.60% 0.6 42.6
50 13 99.58% 2.8 >3600
50 25 * 6.7 >3600

100 25 * 8.1 >3600
100 50 * 26.5 >3600

scpnrg2 10 3 99.83% 0.5 22.6
10 5 98.41% 0.8 42.3
50 13 99.35% 3.5 >3600
50 25 * 8.5 >3600

100 25 * 10.4 >3600
100 50 * 26.6 >3600

scpnrg3 10 3 100.00% 0.4 21.0
10 5 99.95% 0.8 40.3
50 13 98.75% 3.5 >3600
50 25 * 7.7 >3600

100 25 * 10.4 >3600
100 50 * 25.9 >3600

scpnrg4 10 3 100.00% 0.4 23.5
10 5 99.02% 0.8 57.2
50 13 99.08% 3.5 >3600
50 25 * 8.3 >3600

100 25 * 9.8 >3600
100 50 * 25.5 >3600

scpnrg5 10 3 98.63% 0.5 20.0
10 5 98.76% 0.8 60.2
50 13 99.19% 3.6 >3600
50 25 * 8.5 >3600

100 25 * 10.0 >3600
100 50 * 26.6 >3600

Table 6: Comparison of Algorithm 3 and MIP solver on kMMCG OR-Library instances with varying
` and k.

6 Conclusion

In this paper, we address the problem of prioritizing and deploying security mitigations in a layered

defense. We do so by proposing budgeted maximum multiple coverage problems to characterize

investment in cybersecurity mitigations with the objective of maximizing multiple coverage, where
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the coverage is represented by a submodular set function. We introduce model variations that

consider the possibility of coverage failure, the solutions of which lead to a more robust investment

plan. Motivated by the decision maker’s different requirements for selecting security mitigations,

we consider model variants based on cardinality constraints and group cardinality constraints.

We demonstrate that our problems can be formulated as submodular maximization problems sub-

ject to linear or matroid constraints. We develop approximation algorithms with a polynomial

number of objective function evaluations for each of the problem variants and prove guaranteed

performance ratios for these algorithms. An optimal (1−1/e)-approximation ratio is demonstrated

for solving EBMMC, BMMC, kMMC, and kEMMC. An algorithm yielding a 1/2-approximation ra-

tio is identified for general monotone submodular maximization subject to cardinality constraints

and group cardinality constraints, of which kMMCG and kEMMCG are instances. The greedy

algorithms can identify a nested set of non-dominated solutions at no additional computational

expense.

In the computational study, we observe that greedy algorithms identify near-optimal solutions

to large problem instances. In general, these approximation algorithms solved instances faster

than directly solving the corresponding MIP formulation (for deterministic formulations) and a

Benders branch-and-cut implementation (for stochastic formulations). The objective values of

these solutions are within 2.6% of the optimal objective values across all the instances for which

we were able to obtain the true optimal solution. This suggests that simple greedy algorithms are

a practical option for solving large-scale maximum coverage variants. We also found that for the

expected-value variations of the problem, the proposed Benders branch-and-cut algorithm was able

to solve the majority of test instances within an hour, providing a solution option for modelers

wishing to find a provably optimal solution to this variation.

Our models can be used by decision makers to select mitigations with respect to an overall budget or

cardinality requirement, as well as multiple choice limitations. In reality, there could be additional

selection requirements. These can be easily adapted into our models and algorithms by removing

or adding certain constraints. However, it is not clear if a polynomial-time (1 − 1/e) algorithm

exists for solving submodular maximization problems subject to multiple general knapsack or linear

constraints. Work is in progress to develop approximation algorithms with guaranteed performance

ratios for other problem variants with special structures.
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