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Goal of This Talk
Overview of stochastic optimization

I What types of problems might it be useful for?

I Different “flavors” of stochastic optimization models

I Some sense of how they are solved

Stochastic optimization is a branch of mathematical optimization, so we’ll
start with that

Will avoid this!

min E
[ ∑
t∈[T ]

ct(ξ
t)>xt(ξ

t)
]

At(ξ
t)xt(ξ

t) +Bt(ξ
t)xt−1(ξ

t−1) = bt(ξ
t), ∀t ∈ [T ],P-a.s.

Ct(ξ
t)x ≥ dt(ξt), ∀t ∈ [T ],P-a.s.

But, it’s also not going to be (primarily) an application talk
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Mathematical Optimization

Mathematical Optimization

1. Decision variables: Values/decisions to be determined by the model

2. Objective: Minimize/maximize profit, time, energy, cost... (function
of decision variables)

3. Constraints: Restrictions on what values decision variables can take
(inequalities/equations)

Mathematical Optimization Problem

Find values for the decision variables that satisfy all the constraints and
achieve the best possible objective value.

I Optimization ⇒ REALLY the best value (or bounds on error)

I Solution methods vary greatly, depending on structure

Historically (and often still used): Mathematical Programming, Linear
Programming, Nonlinear Programming, Stochastic Programming..
(“Programming” ≡ “Planning”)
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Mathematical Optimization

Example 1: Power Grid Economic Dispatch

Problem solved by Independent System Operators every 5 minutes

I Given power demands and
renewable energy inputs at
points in grid

I Determine generation amounts
at gas/coal plants, amount to
buy from spot market

I Minimize cost

I Do not exceed line limits,
generation limits, etc.
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Mathematical Optimization

Example 2: Scheduling Service System Employees

Service Systems: Call centers, hospital departments, repair shops, etc.

I Given estimated hourly service
demands throughout next week

I Determine employee schedules

I Minimize overtime cost, unmet
customer demands

I Limited by number of employees
having different skill sets,
schedules must meet certain
rules, etc.
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Mathematical Optimization

Example 3: Wildfire Initial Response Planning

Pre-positioning firefighting equipment (dozers, etc.) to be ready for
“initial response”

I Given available equipment and
current locations

I Determine where equipment
should be placed

I Maximize ability to respond to
fires “fast enough”

I Limited by budget, amount of
equipment, space at locations
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Mathematical Optimization

Classes of Optimization Models

Continuous

I Decision variables can take on
any real values

I Infinitely many solutions

I Methods based on iterative
updates to solution, e.g., using
function derivatives (calculus)

Discrete/integer

I Decision variables restricted to
be integer ⇒ Can model
yes/no with 0/1 variables

I May be finite set of solutions,
but too many to enumerate

I Methods based on continuous
relaxations and “smart search”

Wide variation in difficulty!

I Some problems are “well-solved” (polynomial-time algorithms)

I Some problems are “theoretically hard” (NP -hard, etc.)
I Even if a problem is “hard”, in many cases optimization algorithms

can optimally solve most practical instances
I Pet peave: “Problem is NP -hard, so there is no hope to solve it

optimally.”
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Mathematical Optimization

Uncertainty in Optimization Models

Often data in a model is not perfectly known when solving the model

I Measurement errors

I Future events

Examples:

I Energy demand and wind/solar outputs

I Customer volume in service systems

I Forest fire locations and size

I Investment returns

I Cell response to enzyme changes
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Mathematical Optimization

Ignore Uncertainty?

The “Flaw” of Averages

I The flaw of averages occurs when
uncertainties are replaced by “single
average numbers” planning.

I Joke: Did you hear the one about
the statistician who drowned fording a
river with an average depth of three
feet.
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Mathematical Optimization

Uncertainty in Optimization Models

How to incorporate uncertainty into the model?

I Assume uncertain outcomes are random variables ⇒ Stochastic
optimization

I Assume uncertain outcomes lie within some known set and protect
against worst-case ⇒ Robust optimization
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Two-stage Stochastic Optimization

Two-stage Stochastic Optimization

Classic two-stage framework

1. Choose “here and now” decisions

⇒ Observe random variables

2. Make “recourse” decisions (in response to observed random
variables)

Goal: Choose current decisions to minimize immediate cost plus expected
value of cost of “best response” decisions

I Or, maximize expected profit, etc.

I Later: Goals other than expected value
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Two-stage Stochastic Optimization

Power Grid Unit Commitment
Daily/Weekly problem for independent system operators

I Many generators require significant time/cost to “turn on” and “turn
off”

I Need to schedule the on/off status of these in advance (e.g., on
hourly basis, for next day or week) ⇒ “Commitment decisions”

Two-stage stochastic optimization model

I Here and now decisions: Which generators to “turn on/off” and when

I Random variables: Electric load and renewable generation, in each
time period and each location in grid

I Recourse decisions: Economic dispatch, i.e., decide generation levels
(for generators that are on)

I Minimize total expected cost

I Note: Recourse has multiple periods, but if they are independent they
can be considered a single decision stage
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Two-stage Stochastic Optimization

Service System Scheduling

Service systems with multiple employee and customer “types”

I Employee “type” based on which customers they can serve

I Schedules must be made in advance, but assignment of servers to
customers can be done real-time

Two-stage stochastic optimization model

I Here and now decisions: Employee schedules (e.g., for next week)

I Random variables: Number of each customer type arriving in each
period

I Recourse decisions: Assign customers to available employees,
determine “lost” customers

I Minimize expected number of lost customers

I Again: Recourse has multiple periods, but if they are independent,
can be considered a single decision stage
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Two-stage Stochastic Optimization

Wildfire Initial Response Planning

Two-stage stochastic optimization
model

I Here and now decisions: Where
to place firefighting resources

I Random variables: Location and
size of fires

I Recourse decisions: Determine
which equipment to use to
respond to fires, measure size of
uncontained fire

I Minimize expected amount of
uncontained fires
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Limiting Risk

Risk-Averse?

Expected cost/profit is often appropriate objective

I E.g., when optimizing operational decisions that will be repeated

I Typically leads to “safer” solutions than ignoring uncertainty!

But, solutions good on average may still have undesirable risk of “bad
outcome”

I E.g., Two options for investing $1000, each with two equally likely
outcomes

1. Stock: Lose $200, or gain $300 (expected gain = $50)

2. Bitcoin: Lose $900, or gain $2000 (expected gain = $550)
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Limiting Risk

Risk Measures
Random outcome ⇔ Distribution of possible values

I Expected value summarizes distribution with a single number, by
averaging over all the outcomes

Risk measures

I Alternative ways to summarize distribution

I E.g., measure distribution spread (variance), or focus on the “bad
events”
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Limiting Risk

Risk Measures

Example: Conditional value-at-risk

I Average over the 5% of worst outcomes (e.g., losses)

I Idea: Good outcomes are anyway good, more important to choose
solution that is better in the bad cases
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Limiting Risk

Risk Measures
Typical use in stochastic optimization model:

I Minimize expected cost, with bound on risk: Repeat with many values
I Construct an “efficient frontier” of pareto optimal solutions
I Idea dates to Markowitz’ classic mean/variance portfolio model
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Limiting Risk

Chance Constraints
Sometimes difficult to quantify “cost” of a bad outcome

I Power line limit exceeded: May not fail at all, may lead to cascading
failure

I Service system scheduling: Poor service coverage ⇒ Lose customer
“goodwill”

I Wildfire initial response planning: Difficult to predict magnitude of
fires for which initial response failed

Chance constraint

Restrict the probability of undesirable event to be below a limit, ε

I Probability(line limit exceeded) ≤ 0.01
I Probability(any customers unserved) ≤ 0.05
I Probability(any fire not contained) ≤ 0.10

How to choose limit ε?
I Try many and construct efficient frontier of pareto optimal solutions
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Multi-stage Stochastic Optimization

Multi-stage Stochastic Optimization Problem
Finite-horizon sequential decision making problems under uncertainty

Stage t− 1
decisions

Stage t
decisions

observe

random
outcomes

· · · · · ·t = 1 t = T

xt−1 xtx1

When making decisions in stage t:
I Must anticipate full sequence of future random events and optimal

responses to those

Examples: When would they be multi-stage?
I Power grid unit commitment: If can adjust future commitment

decisions every hour (or day)
I Employee scheduling: Recourse is multi-stage if customers willing to

wait from one period to next
I Wildfire initial response planning: Move equipment periodicallly based

on evolving availability
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Solution Methods

First Challenge: Evaluating Expected Value
Stochastic optimization models typically have many random variables

I Need estimate of expected value of objective as function of decision
variables

I Exact evaluation impossible even for a single set of decision variable
values

I Similar challenge for chance constraints (calculate probability of
event) or risk measures

Typical appraoch: “Sample average approximation”

I Approximate vector of random variables with finite set of “scenarios”

I Expected value ⇒ Weighted sum

I Often scenarios from a Monte Carlo sample, but many more advanced
approaches

Sample average approximation ⇒ Deterministic, but very large-scale
optimization model
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Solution Methods

Approximating Expected Value

Key question: How many scenarios required for “good approximation”?

I Significant research into this for variety of problems (two-stage,
chance constraints, risk measures, multi-stage)

I Good news: Surprisingly, required number grows “mildly” with
number of decision variables and random variables

I Bad news: Required number grows fast with desired accuracy

Conclusion

In many cases sampling enables solving stochastic optimization problems
to “modest accuracy”

I Exception: For multi-stage problems, sample size grows
exponentially with number of stages

Next challenge: How to solve the very large-scale optimization model
defined by sample average approximation?
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Solution Methods

Solving Sample Average Approximation: Two-Stage
Problems

Large-scale because model must account for actions in every scenario

I Structure: With first-stage decisions fixed, each scenario can be
considered independently

I Single problem of size N ×m ⇒ N separate problems of size m

Algorithms exploit this structure via decomposition

1. Choose first-stage decisions by solving a “master problem”

2. Solve recourse problem for each scenario to evaluate first-stage
decisions

3. Collect information from recourse problems to update master
problem, and repeat

Similar idea for problems with risk measures, chance constraints
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Solution Methods

Other Approaches: Two-Stage Problems

Alternative decomposition strategy:

I Solve full problem (first and second-stage) separately for each scenario

I Issue: Different here-and-now decisions in different scenarios

I Average the here-and-now decisions ⇒ “Consensus” decision

I Re-solve separate subproblem, but with penalty for straying from
consensus

Stochastic approximation (stochastic gradient descent):

I Sampling is integrated in algorithm
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Solution Methods

Multi-Stage Problems

Frequent simplifying assumption: Random variables in different stages are
independent

I Often can vbe satisfied with appropriate modeling

I Many methods based on recursive approximation of “cost-to-go”
function

I Related approach: (Deep) reinforcement learning (AlphaGo)

Approximation by restricting flexibility in decisions

I Require all (or some) decisions to be linear function of observed
random variables

I Restricted problem is one or two-stage problem

I Similar techniques in “dual” problem yields bounds on solution quality
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Solution Methods

Open Challenges

Many areas for ongoing work

I Stochastic + discrete

I Multi-stage

I Chance constraints with small risk tolerance

I High-impact, rare events

I Integrating stochastic optimization and machine learning/prediction
models (data-driven)

I Use it for...

Questions?

jim.luedtke@wisc.edu
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