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In this paper, we consider mixed integer linear programming (MIP) formulations for piecewise linear
functions (PLFs) that are evaluated when an indicator variable is turned on. We describe modifications
to standard MIP formulations for PLFs with desirable theoretical properties and superior computational
performance in this context.
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1. Introduction

Optimization problems involving piecewise linear functions
(PLFs) appear in a wide range of applications. PLFs are frequently
used to approximate nonlinear functions and to model cost
functions involving economies of scale and fixed charges. Problems
involving non-convex PLFs are commonly formulated as mixed
integer programming (MIP) problems [4,17,8,2,23].

Consider a univariate PLF f : [B0, Bn] → R with its
domain [B0, Bn] divided into an increasing sequence of breakpoints
{B0, B1, . . . , Bn}. For simplicity, we assume that f (·) is continuous,
B0 = 0 and f (0) = 0. Our results can be extended to the case when
f (·) is lower semi-continuous, B0 ≠ 0, and f (B0) ≠ 0. The function
f (·) can be written as

f (x) := mix + ci, x ∈ [Bi−1, Bi] ∀i ∈ {1, . . . , n} (1)

wheremi ∈ R, ci ∈ R and B0 < B1 < · · · < Bn.
In this paper, we present MIP formulations for PLFs where

setting a binary indicator variable to zero forces the argument of
the function of f (·) to zerowhich in turn forces the function to take
a zero value. In other words,

z = 0 ⇒ x = 0, f (x) = 0. (2)

The goal of this work is to present a theoretical and
computational comparison of MIP formulations that enforce the
logical conditions in (2). Specifically, we examine properties of
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different formulations of the three variable set

X :=

n
i=1


(x, y, z) : x ∈ [Bi−1, Bi], y = mix + ci, z = 1




(0, 0, 0)

. (3)

In some applications, notably those where the PLF appears in a
minimization objective, the relevant set to study has the variable
y constrained to lie in the epigraph of a function. We denote X≥

as the set where the equality relationship y = mix + ci in (3) is
replaced with y ≥ mix + ci.

Methods for modeling PLFs include specially ordered sets
of type II (SOS2) [4], the incremental model, or delta method
(Delta) [17], the multiple choice model (MCM) [13], the con-
vex combination (CC) model [8], the disaggregated convex com-
bination model (DCC) [19], and approaches that require only
logarithmically many binary variables [24]. Table 1 lists several
applications in the literature that have modeled PLFs using these
well-known methods in conjunction with variable upper bound
constraints of the form
x ≤ Bnz (4)
to enforce the logical on–off condition (2).

In this work, we propose a simple modeling artifice for PLFs
that also enforces the logical condition (2), and we demonstrate
its desirable theoretical and computational properties. We start by
describing the idea using SOS2 to model a PLF as

x =

n
i=0

λi Bi, y =

n
i=0

λiFi 1 =

n
i=0

λi (5)

λ :=


λi ∈ R+ : ∀i ∈ {0, . . . , n}


is SOS2.
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Table 1
Applications using PLFs with indicator variables.

Ref. Application Model

[18] Gas network optimization SOS2
[1] Transmissions expansion planning Delta
[12] Oil field development CC
[6] Thermal unit commitment Delta
[16] Sales resource allocation MCM

In this formulation, the function f (·) and its argument x are ex-
pressed as convex combinations of breakpoints B := {B0, . . . , Bn}

and their corresponding function evaluations {F0, . . . , Fn} where
Fi := f (Bi) = miBi + ci. The formulation introduces a non-negative
set of variables λ ∈ Rn+1 that satisfy the SOS2 property—at most
two of the variables can be positive, and if two variables are posi-
tive then theymust be consecutive in the ordered set.Mostmodern
general purpose MIP solvers enforce the SOS2 condition algorith-
mically by branching [4].

Using variable upper bound constraints (4) to enforce the logical
condition (2) has two problems. First, the use of ‘‘bigM’’ constraints
may considerablyweaken the LP relaxation of theMIP formulation.
Second, the model introduces an additional constraint x ≤ Bnz.

We propose the following simple strengthening that replaces
x ≤ Bnz and

n
i=0 λi = 1 with

n
i=0

λi = z. (6)

Setting the binary variable z = 0 in (6) forces λi = 0 ∀i ∈

{0, . . . , n}, which in turn forces the function to take a zero value.
If the binary variable z = 1, then

n
i=0 λi = 1, which reduces

to (5). We show in Section 2.1 that a formulation using (6) has
the desirable property of being locally ideal, while one that uses
x ≤ Bnz does not.

In Section 2, we also show how to strengthen MIP formulations
of X that use the incremental model, the multiple choice model,
the convex combination model, the disaggregated convex combi-
nationmodel, and logarithmicmodels tomodel the PLF. Therefore,
this formulation strengthening technique could be directly applied
to all of the applications listed in Table 1. In all cases, we show that
our model retains the desirable theoretical property of the under-
lying PLF modeling method, either idealness or sharpness, but us-
ing a variable upper bound constraint x ≤ Bnz destroys the prop-
erty. Borghetti et al. [5] created a formulation of X that employed
the strengthening techniques we describe. They used the convex
combination method to model the PLFs which does not have the
locally ideal property [23]. In the case that the PLFs are convex,
we describe a connection between the formulation strengthening
techniques we describe and the perspective reformulation [11]. The
Delta, MCM, CC, and DCC MIP formulations can all be extended to
modelmultivariate piecewise linear functions [23].When themul-
tivariate piecewise linear functions are combined with the struc-
ture (2), our strengthened formulation can be similarly applied.We
omit the details to simplify exposition. We conclude with a com-
putational study on a practical application to illustrate the bene-
fits of the new formulations. In our experiments, we observed that
our formulation computes optimal solutions on average 40 times
faster.

2. Properties of MIP formulations

Padberg and Rijal [21] define a locally ideal MIP formulation as
onewhere the vertices of its corresponding LP relaxation satisfy all
required integrality conditions. Extending this definition, Croxton
et al. [7] and Keha et al. [14] define a locally ideal SOS2 formulation
as one whose LP relaxation has extreme points that all satisfy

the SOS2 property. As shown by Vielma et al. [23], all commonly
used MIP formulations of PLFs, except for the original convex
combination (CC) model, are known to be locally ideal. In this
section, we demonstrate the theoretical strength of the proposed
formulations for X that include the logical condition (2).

2.1. SOS2 model

We consider the following two SOS2-based formulations for X:

S1 :=


(x, y, λ, z) ∈ R × R × Rn+1

+
× {0, 1} :

x =

n
i=0

Biλi, y =

n
i=0

Fiλi, 1 =

n
i=0

λi,

x ≤ Bnz, λ is SOS2



S2 :=


(x, y, λ, z) ∈ R × R × Rn+1

+
× {0, 1} :

x =

n
i=0

Biλi, y =

n
i=0

Fiλi, z =

n
i=0

λi, λ is SOS2


where S1 is a standard SOS2model for PLFs that uses the constraint
(4), while formulation S2 uses the constraint (6) to model the
logical condition (2). One can easily show that both S1 and S2 are
valid formulations of X . In otherwords, for either T = S1 or T = S2,

X =


(x, y, z) : ∃λ ∈ Rn+1 s.t (x, y, z, λ) ∈ T


.

We use the standard definition of the linear programming (LP)
relaxation of a model as the relaxation obtained by replacing
integrality restrictions on variables with simple bound restrictions
and by removing adjacency requirements for SOS2 variables. We
now prove that the formulation S2 is locally ideal while S1 is not.

Theorem 1. Formulation S2 is locally ideal.

Proof. The LP relaxation of S2 has n + 4 variables, three equality
constraints

x =

n
i=0

Biλi, y =

n
i=0

Fiλi, z =

n
i=0

λi,

and n+2 inequality constraints, z ≤ 1 and λi ≥ 0∀i = 0, 1, . . . , n.
Extreme points of the LP relaxation of S2 have n + 4 binding
constraints, which forces at least n variables from λ ∈ Rn+1

+ to be
exactly equal to zero. Thus, the extreme points of the LP relaxation
of S2 are

{(x = Bi, y = Fi, λ = Bie⃗i, z = 1) ∀i ∈ {1, . . . , n}}
(x = 0, y = 0, λ = 0⃗, z = 0) (7)

where e⃗i are the n dimensional unit vectors. All points in (7) have
z ∈ {0, 1} and satisfy the SOS2 properties for the λ variables.
Hence, S2 is locally ideal. �

A point (x, y, λ, z) can be an extreme point of the set

P≥

2 :=


(x, y, λ, z) ∈ R × R × Rn+1

+
× [0, 1] :

x =

n
i=0

Biλi, y ≥

n
i=0

Fiλi, z =

n
i=0

λi


only if y =

n
i=0 Fiλi. Therefore, the proof of Theorem 1 also

establishes that expressing the logical condition (2) using (6) also
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results in a locally ideal formulation of X≥. Similar logic applies in
our subsequent proofs of the local idealness of other formulations
of X (Theorems 4 and 6). In each case, our proposed modeling
of the logical condition (2) also yields a locally ideal formulation
of X≥.

Theorem 2. Formulation S1 is not locally ideal.

Proof. Consider an instance with n = 3, B =

0, 1

3 ,
2
3 , 1


, and

F = {0, 4, 2, 3}. The point

x =

1
3 , y = 4, λ = (0, 1, 0, 0), z =

1
3


is feasible to the LP relaxation of S1 but not feasible for the LP
relaxation of S2. Since the projection of the LP relaxation of S2 is
a subset of the projection of the LP relaxation of S1, S1 cannot be
locally ideal. �

An interesting consequence of Theorem1 is thatwhen the PLF is
convex, the application of the reformulation technique we suggest
to the set X≥ is equivalent to the perspective reformulation [11],
a preprocessing technique for (convex) mixed integer nonlinear
programs that have the logical indicator structure (2). If f (·) is
convex, then m1 > m2 > · · · > mn, and the perspective
reformulation of X≥ is

P = {(x, y, z) ∈ R2
× [0, 1] : y ≥ mix + ciz ∀i ∈ {1, . . . , n},

0 ≤ x ≤ Bnz},

where mi := (Fi − Fi−1)/(Bi − Bi−1) and ci := (Fi−1 − Bi−1(Fi −

Fi−1)/(Bi − Bi−1)). Günlük and Linderoth [10] show that if f (·) is
convex, then P = conv(X≥). The formulation S2 is locally ideal, so
P≥

2 must also be a formulation that is similarly strong.

Corollary 3. Projxyz(P
≥

2 ) = P = conv(X≥)

2.2. Incremental model

The incremental model introduces a set of non-negative vari-
ables δ := {δ1, . . . , δn} to model the portion of each interval
‘‘filled’’ by the variable x. The interval i + 1 can be filled (δi+1 > 0)
only if the interval i is already filled (δi = 1). Unlike the SOS2
model, the incremental model specifically requires the introduc-
tion of binary variables b ∈ {0, 1}n−1 to enforce the necessary or-
dering conditions. To model the on–off logical condition (2), the
incremental model can be augmentedwith a variable upper bound
constraint x ≤ Bnz, resulting in a formulation

∆1 :=


(x, y, δ, z, b) ∈ R × R × Rn

× {0, 1} × {0, 1}n−1
:

x =

n
i=1

[Bi − Bi−1]δi, y =

n
i=1

[Fi − Fi−1]δi, x ≤ Bnz,

δ1 ≤ 1, 0 ≤ δn, δi+1 ≤ bi ≤ δi ∀i ∈ {1, . . . , n − 1}


.

Alternatively, the on–off condition canbe enforced by replacing the
constraint δ1 ≤ 1 with δ1 ≤ z, yielding the formulation

∆2 :=


(x, y, δ, z, b) ∈ R × R × Rn

× {0, 1} × {0, 1}n−1
:

x =

n
i=1

[Bi − Bi−1]δi, y =

n
i=1

[Fi − Fi−1]δi,

δ1 ≤ z, 0 ≤ δn, δi+1 ≤ bi ≤ δi ∀i ∈ {1, . . . , n − 1}


.

Incremental models that use δ1 ≤ z are locally ideal, while those
that use x ≤ Bnz are not.

Theorem 4. Formulation ∆2 is locally ideal.

Proof. The matrix for the constraint system in ∆2, ignoring the
equality constraints defining x and y, is

−δ1 + z ≥ 0,
δi − bi ≥ 0 ∀i ∈ {1, . . . , n − 1},
−δi+1 + bi ≥ 0 ∀i ∈ {1, . . . , n − 1},
δn ≥ 0,

which is a network matrix, and hence is totally unimodular. Thus
all extreme points of the LP relaxation of ∆2 naturally satisfy the
requisite integrality properties. �

Theorem 5. Formulation ∆1 is not locally ideal.

Proof. Consider an instance with n = 3, B =

0, 1

3 ,
2
3 , 1


and F =

{0, 4, 2, 3}. The point

x =

1
3 , y = 4, δ = (1, 0, 0), z =

1
3 , b =

(0, 0)

is feasible to the LP relaxation of ∆1 but not feasible to the

LP relaxation of ∆2. �

2.3. Multiple choice model

In the multiple choice model, a non-negative set of variables
w := {w1, . . . , wn} and an additional set of binary variables
b := {b1, . . . , bn} are introduced, with the logical implication that
wi = x if x is in the ith interval, and wi = 0 otherwise. Using
a variable upper bound constraint to enforce the logical condition
(2) with themultiple choicemodel gives the following formulation
of X:

M1 :=


(x, y,w, z, b) ∈ R × R × Rn

× {0, 1} × {0, 1}n :

n
i=1

wi = x, y =

n
i=1

(miwi + cibi), x ≤ Bnz,

n
i=1

bi = 1, Bi−1bi ≤ wi ≤ Bibi ∀i ∈ {1, . . . , n}


.

Instead, the on–off condition can be formulated by replacing the
constraints

n
i=1 bi = 1 with

n
i=1 bi = z, yielding a formulation

M2 :=


(x, y,w, z, b) ∈ R × R × Rn

× {0, 1} × {0, 1}n :

n
i=1

wi = x, y =

n
i=1

(miwi + cibi),

n
i=1

bi = z, Bi−1bi ≤ wi ≤ Bibi ∀i ∈ {1, . . . , n}


.

Theorem 6. Formulation M2 is locally ideal.

Proof. Following Balas [3], we write an extended formulation
for the convex hull of the union of the n + 1 polytopes X0 =

{(0, 0, 0)}, Xi = {(x, y, z) : Bi−1 ≤ x ≤ Bi, y = mix + ci, z =

1} ∀i ∈ {1, . . . , n} as those (x, y, z) for which there exist vectors
w = [w0, . . . , wn], v = [v0, . . . , vn], u = [u0, . . . , un], b =

[b0, . . . , bn] such that the following inequality system is satisfied:

x =

n
i=0

wi, y =

n
i=0

vi, z =

n
i=0

ui, 1 =

n
i=0

bi,

w0 = 0, v0 = 0, u0 = 0, bi ≥ 0 ∀i ∈ {0, . . . , n}
Bi−1bi ≤ wi ≤ Bibi ∀i ∈ {1, . . . , n},
vi = miwi + cibi ∀i ∈ {1, . . . , n},
ui = bi ∀i ∈ {1, . . . , n}.
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We can eliminate b0, u, and v from this system to obtain

x =

n
i=1

wi, y =

n
i=1

(miwi + cibi),

z =

n
i=1

bi, z ≤ 1

bi ≥ 0, Bi−1bi ≤ wi ≤ Bibi ∀i ∈ {1, . . . , n},

which is equivalent to the LP relaxation ofM2. �

Theorem 7. Formulation M1 is not locally ideal.

Proof. Consider an instance with n = 3, B =

0, 1

3 ,
2
3 , 1


, and

F = {0, 4, 2, 3}. The point

x =

1
3 , y = 4, w =


0, 1

3 , 0

, z =

1
3 ,

b = (0, 1, 0)

is feasible to the linear programming relaxation of

M1, but not feasible forM2. �

2.4. Convex combination model

Another popular formulation for PLFs is the convex combina-
tion model, also known as the lambda method. The convex com-
bination model uses continuous variables λ ∈ Rn+1 and binary
variables b ∈ {0, 1}n. The continuous variables are used to express
x and y in terms of the breakpoints B and function values F . The
binary variables are used to enforce the adjacency condition that
bi = 1 ⇒ λj = 0, ∀j ∉ {i − 1, i}. Using a variable upper bound
to model the logical on–off condition (2) in combination with the
most commonly used convex combinationmodel gives the follow-
ing formulation of X:

C1 :=


(x, y, λ, z, b) ∈ R × R × Rn+1

+
× {0, 1} × {0, 1}n :

x =

n
i=0

λiBi, y =

n
i=0

λiFi, x ≤ Bnz,

n
i=0

λi = 1,
n

i=1

bi = 1,

λ0 ≤ b1, λn ≤ bn, λi ≤ bi + bi+1 ∀i ∈ {1 . . . n − 1}


.

Instead, the on–off condition can be directly imposed by replacingn
i=1 bi = 1 and

n
i=0 λi = 1 with the constraints

n
i=1 bi =n

i=0 λi = z. This gives the following formulation of X:

C2 :=


(x, y, λ, z, b) ∈ R × R × Rn+1

+
× {0, 1} × {0, 1}n :

x =

n
i=0

λiBi, y =

n
i=0

λiFi,
n

i=0

λi = z,
n

i=1

bi = z,

λ0 ≤ b1, λn ≤ bn, λi ≤ bi + bi+1 ∀i ∈ {1 . . . n − 1}


.

It has been shown by Padberg [20] and Lee and Wilson [15] that
the convex combination model that uses the constraints

λ0 ≤ b1, λn ≤ bn, λi ≤ bi + bi+1 ∀i ∈ {1 . . . n − 1} (8)

to model adjacency is not locally ideal. Padberg [20] gives the
following improved formulation:

n
i=j

λi ≤

n
i=j

bi,
j−1
i=0

λi ≤

j
i=1

bi ∀j = 1, . . . , n,

which does result in a locally ideal formulation of PLFs. However,
in most presentations of the convex combination model in the
literature [8,5,12,9] the non-ideal formulation (8) is used.

The convex combination model with constraints (8) does not
result in a formulation that is locally ideal, however it does satisfy
sharpness, a slightly weaker desirable property. An extended MIP
formulation of a convex set is sharp if the extreme points of the
projection of the LP relaxation of the formulation to the original
space of variables (x, y, z in this case) satisfy integrality [13].
Vielma et al. [23] showed that the convex combination model
that uses adjacency constraint (8) is sharp. We now show that the
formulation C2 is sharp while C1 is not sharp.

Theorem 8. Formulation C2 is sharp.

Proof. Suppose that t = (x, y, λ, z, b) is an extreme point of the
linear programming relaxation of C2 with 0 < z < 1. For ϵ > 0
define the points t+ = (x+, y+, λ+, z+, b+) and t− = (x−, y−,
λ−, z−, b−) as

b+

i = (1 + ϵ)bi, λ+

i = (1 + ϵ)λi, ∀i ∈ {1, . . . , n}

z+
= (1 + ϵ)z, x+

=

n
i=0

λ+

i Bi, y+
=

n
i=0

λ+

i Fi

b−

i = (1 − ϵ)bi, λ−

i = (1 − ϵ)λi, ∀i ∈ {1, . . . , n}

z−
= (1 − ϵ)z, x−

=

n
i=0

λ−

i Bi, y−
=

n
i=0

λ−

i Fi.

For some ϵ > 0, the points t+, t− are both feasible for the linear
programming relaxation of C2, and t = 0.5(t+ + t−), so t must not
have been an extreme point. �

Theorem 9. Formulation C1 is not sharp.

Proof. Consider an instance with n = 3, B =

0, 1

3 ,
2
3 , 1


,

and F = {0, 4, 2, 3}. One can verify that one of extreme points
of the projection of the linear programming relaxation of C1
is


x =

1
3 , y = 4, z =

1
3


, which does not satisfy the required

integrality constraint on z. �

2.5. Other formulations

The disaggregated convex combination model for PLFs uses
two sets of non-negative variables λ ∈ Rn

+
and µ ∈ Rn

+
and

a set of binary variables b ∈ {0, 1}n. The disaggregated convex
combination model for a PLF is

y =

n
i=1

(λiFi + µiFi−1), x =

n
i=1

(λiBi + µiBi−1)

n
i=1

bi = 1, bi = λi + µi ∀i ∈ {1, . . . , n}. (9)

This formulation can be extended to model X by replacing the
constraints

n
i=1 bi = 1 with

n
i=1 bi = z. The disaggregated

convex combination model that uses these constraints is a locally
ideal formulation of X .

Vielma and Nemhauser [24] modify the disaggregated convex
combination model to use a logarithmic number of binary
variables. Using notation defined in Vielma and Nemhauser [24],
replacing

n
i=1 λi = 1 with

n
i=1 λi = z is a valid locally ideal

reformulation of model X . For the sake of brevity, we have omitted
detailed discussions and proofs concerning the disaggregated
convex combination models.
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Fig. 1. Sample curves modeling return on investment for five different product/
strategy pairs.

3. Computational results

In this section, we illustrate with numerical experiments the
impact of using a locally ideal formulation (S2) instead of a weaker
model (S1) that is not locally ideal.

3.1. Practical application

Tomake the numerical comparison, we consider an advertising
budget allocation problem introduced by Zoltners and Sinha [25].
In this problem, a company is required to allocate an advertising
budget D among a set K of advertising strategies for a set of P
products. Let xjk denote the amount of the advertising resource
allocated to strategy k ∈ K for product j ∈ J. The company incurs
a fixed cost Gj for entering themarket with product j ∈ J aswell as
a variable cost cjk for each unit of the resource allocated to strategy
k ∈ K of product j ∈ J. The return on investment is evaluated
by piecewise-linear functions yjk = fjk(xjk) which have the typical
form shown in Fig. 1.

A MIP formulation for this problem is

max

i∈J


j∈K

yjk
i∈J


j∈K

cjkxjk +


i∈J

Gjzj ≤ D

(xjk, yjk, zj) ∈ Xjk ∀j ∈ J, k ∈ K, (AP)

where Xjk is meant to denote that each of the triplets of variables
(xjk, yjk, zj) must lie in a set X (defined in (3)) specific to the
product/strategy pair. We denote by AP(S1) the MIP formulation
of AP that uses S1 to model (3) and AP(S2) as the MIP formulation
of AP that uses the stronger formulation S2.

3.2. Numerical results

We report tests conducted on 120 simulated instances of AP(X).
We created 20 random instances for each of the six problem
sizes (|J|, |K|, n) ∈ {(50, 50, 10), (50, 100, 10), (100, 100, 10),
(50, 50, 20), (50, 100, 20), (100, 100, 20)}. All instances were
solved to 0.1% optimality using Gurobi 4.5.1 with default options
on 2.66 GHz Intel Core2 Quad CPUQ9400 processorwith 8GB RAM.
For all instances, we compare the quality of the LP relaxation as the
percentage gap between the root LP relaxation value of the MIP
formulations AP(S2) and AP(S1) relative to the optimal solution for
each instance. We also measure the CPU time taken (using a single
thread) and number of nodes in the search tree. Table 2 shows the
summary statistics of our experiment.

The results convincingly demonstrate the advantage of using
the locally ideal formulation AP(S2). The average root gap for

Table 2
Summary of performance of formulations AP(S2) and AP(S1) on 120 simulated
instances. Arithmetic mean, standard deviation, and geometric mean are shown.

Metric Model A.M St. Dev G.M

LP gap (%) AP(S2) 0.05 0.05 0.03
AP(S1) 19.7 1.5 19.6

Time (s) AP(S2) 16.8 12.0 12.3
AP(S1) 703.0 853.1 255.6

Nodes AP(S2) 26.3 33.1 9.2
AP(S1) 402.9 312.4 314.5

AP(S2)was 0.05%, while for AP(S1) the average root gapwas 19.6%.
In fact, the best root gap for any instance of AP(S1) was 17.1%. In
terms of MIP solve times, AP(S2) was solved in 16.8 s on average,
41.8 times faster than the 703 s average time to solve AP(S1). In the
worst case, Gurobi explored 1117 timesmore nodes on an instance
modeled with AP(S1) than with AP(S2). Clearly, one should use the
locally ideal model AP(S2).

4. Concluding remarks

The multiple choice formulation can be seen as an application
of disjunctive programming [3,22]. An interesting direction for
future work would be to explore the application of our proposed
formulation strengthening technique to MIP models of disjunctive
constraints that have a structure similar to (2).
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