
SIAM J. OPTIM. c© 2015 Society for Industrial and Applied Mathematics
Vol. 25, No. 3, pp. 1344–1367

AN ADAPTIVE PARTITION-BASED APPROACH FOR SOLVING
TWO-STAGE STOCHASTIC PROGRAMS WITH FIXED RECOURSE∗

YONGJIA SONG† AND JAMES LUEDTKE‡

Abstract. We study an adaptive partition-based approach for solving two-stage stochastic
programs with fixed recourse. A partition-based formulation is a relaxation of the original stochastic
program, and we study a finitely converging algorithm in which the partition is adaptively adjusted
until it yields an optimal solution. A solution guided refinement strategy is developed to refine the
partition by exploiting the relaxation solution obtained from a partition. In addition to refinement,
we show that in the case of stochastic linear programs, it is possible to merge some components in
a partition, without weakening the corresponding relaxation bound, thus allowing the partition size
to be kept small. We also show that for stochastic linear programs with simple recourse, there exists
a small partition that yields an optimal solution. The size of this partition is independent of the
number of scenarios used in the model. Our computational results show that the proposed adaptive
partition-based approach converges very fast to a small partition for our test instances. In particular,
on our test instances the proposed approach outperforms basic versions of Benders decomposition and
is competitive with the state-of-art methods such as the level method for stochastic linear programs
with fixed recourse.

Key words. two-stage stochastic programming, scenario partitions, simple recourse

AMS subject classifications. 90C15, 90C06

DOI. 10.1137/140967337

1. Introduction. We study an adaptive partition-based approach for solving
two-stage stochastic programs with fixed recourse. Specifically, we consider the fol-
lowing scenario-based formulation of a stochastic program:

(1.1) min
x∈X

c�x+
∑
k∈N

fk(x),

where N is a given set of scenarios and for each k ∈ N ,

(1.2) fk(x) := min
yk∈R

n2
+

{d�yk | T kx+Wyk ≥ hk}.

X ⊆ R
n1
+ is a closed deterministic feasible set, d ∈ R

n2 , and T k ∈ R
m2×n1 , hk ∈ R

m2

for each scenario k ∈ N . We assume that the problem min{c�x | x ∈ X} and problem
(1.1) are both feasible and bounded. The finite scenario stochastic program (1.1) is
motivated by the sample average approximation (SAA) approach [7]. The number of
scenarios required to obtain a good approximation may be very large in some cases.
This motivates computational methods that can efficiently solve problems with a large
scenario set. In (1.1), we assume that the recourse matrixW ∈ R

m2×n2 is the same for

∗Received by the editors May 1, 2014; accepted for publication (in revised form) April 13, 2015;
published electronically July 14, 2015. This research has been supported in part by the National
Science Foundation under grant CMMI-0952907 and by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under
contract number DE-AC02-06CH11357.

http://www.siam.org/journals/siopt/25-3/96733.html
†Department of Statistical Sciences and Operations Research, Virginia Commonwealth University,

Richmond, VA 23284 (ysong3@vcu.edu).
‡Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison,

WI 53706 (jim.luedtke@wisc.edu).

1344

http://www.siam.org/journals/siopt/25-3/96733.html
mailto:ysong3@vcu.edu
mailto:jim.luedtke@wisc.edu

PARTITION-BASED APPROACH FOR STOCHASTIC PROGRAMS 1345

all scenarios (fixed recourse) and also assume the cost vector d is fixed. The extensive
formulation of (1.1) is given by

z∗ = min c�x+
∑
k∈N

d�yk(1.3a)

s.t. T kx+Wyk ≥ hk ∀k ∈ N,(1.3b)

x ∈ X, yk ∈ R
n2
+ ∀k ∈ N.(1.3c)

We study an adaptive partition-based approach for solving the two-stage stochas-
tic program (1.3). A partition N = {P1, P2, . . . , PL} of the scenario set is a collection
of subsets of the scenarios such that P1 ∪ P2 ∪ · · · ∪ PL = N and Pi ∩ Pj = ∅ ∀i, j ∈
{1, 2, . . . , L}, i 	= j. Given a partition N , we obtain a relaxation of (1.3) by aggre-
gating scenario constraints (1.3b) together and replacing

∑
k∈P yk by yP for each

component P ∈ N :

zN = min c�x+
∑
P∈N

d�yP(1.4a)

s.t. T̄Px+WyP ≥ h̄P ∀P ∈ N ,(1.4b)

x ∈ X, yP ∈ R
n2
+ ∀P ∈ N ,(1.4c)

where T̄P :=
∑

k∈P T k, h̄P :=
∑

k∈P hk ∀P ∈ N . We call (1.4) the partition-based
master problem with respect to partition N .

Lemma 1.1. Given a partition N = {P1, P2, . . . , PL}, the partition-based master
problem (1.4) is a relaxation for (1.3), and zN ≤ z∗.

Proof. Let (x̄, ȳ) be an optimal solution of (1.3), and let x = x̄, yP =
∑

k∈P ȳk

for each P ∈ N , then c�x+
∑

P∈N d�yP = z∗, and (x, y) is feasible to (1.4).
We are interested in developing an adaptive partition-based approach that solves

a sequence of problems of the form (1.4) with adaptively chosen partition N , which
either solves (1.3) exactly or finds a solution that has the corresponding objective
value within ε of the optimal objective value z∗.

Definition 1.2. A partition N is ε-sufficient if zN ≥ z∗− ε. In particular, when
zN = z∗, i.e., N is 0-sufficient, we say N is completely sufficient.

The goal is to identify a completely sufficient partition or an ε-sufficient partition
with a small ε, which has a much smaller size than the original scenario-based problem
(1.3). Unless otherwise stated, let ε be a fixed parameter, and we refer to ε-sufficient
partitions simply as sufficient partitions.

The idea of using aggregation for solving general large-scale optimization prob-
lems has a long history. Classically in [40, 41], constraint aggregation and variable
aggregation are applied to obtain relaxations of linear programs (LP). This idea is
then extended to solve a wider range of problems, including integer programs [17]
and dynamic programs [2], etc. See [28] for a survey on some classic aggregation-
based methods. In stochastic programming, aggregation has been studied to obtain
either an optimality bound [6] or a hierarchy of bounds [32]. For multistage stochastic
linear programs with a general probability distribution, [39] studies aggregation and
disaggregation with respect to the underlying information structure of the probability
distribution. A more general concept of aggregation is proposed in [29], which con-
siders constraints aggregation across different scenarios as well as constraints within
each scenario.

A natural extension to this aggregation approach is to identify a sufficient parti-
tion N through an iterative algorithm. Three questions arise when designing such an

1346 YONGJIA SONG AND JAMES LUEDTKE

algorithm. The first question is how to determine if a partition N is sufficient, and
when it is not sufficient, how to refine the partition. We provide a sufficient and nec-
essary condition for a partition N to be completely sufficient. This condition provides
guidance on how to refine a partition. The second question is to estimate the required
size of a sufficient partition. There exists a trivial sufficient partition N = {{k}k∈N},
but it is not interesting because it does not reduce the size of the problem. For two-
stage stochastic LPs with simple recourse, we show that there exists a completely
sufficient partition whose size does not depend on the number of scenarios N . This
suggests that the partition-based approach has the potential to solve a sequence of
relatively small problems to achieve an optimal solution of (1.3). Another question
is if it is possible to merge components of a partition back together dynamically, so
that we are able to prevent the partition from growing too large during the proce-
dure. When X is a polyhedron, we propose a merging strategy that guarantees that
the relaxation is not weakened after merging. This analysis yields a new algorithmic
framework for two-stage stochastic linear programs that is fundamentally different
from Benders decomposition (or its L-shaped variant [36]) due to the difference in the
master problem that is solved. We conduct extensive computational experiments on
test instances having fixed recourse and technology matrices (i.e., T k ≡ T, k ∈ N).
We find that the adaptive partition-based algorithm outperforms basic versions of
Benders decomposition (including the multi-cut implementation [7] and the single-
cut L-shaped algorithm [36]). In addition, we found the adaptive partition-based
approach to be often competitive with, and occasionally superior to, the L-shaped
algorithm regularized with the level method [14, 22] on our test instances.

Our work can be seen as an application of the adaptive partition-based algorithmic
template proposed by Bienstock and Zuckerberg [5], which generalizes an algorithm
for solving precedence constrained production scheduling problems. Our approach is
also similar to the partition scheme proposed to solve the scenario-based formulation of
a conditional value-at-risk (CVaR) minimization stochastic program [13]. Computa-
tional experiments in [13] empirically demonstrate that the iterative partition scheme
can keep the partition size small and hence is computationally beneficial when the
number of scenarios is large. We generalize this idea to two-stage stochastic programs
with fixed recourse, with the CVaR minimization problem as a special case. We prove
that there exists a small completely sufficient partition for the case of simple recourse,
providing a theoretical explanation for the promising empirical results obtained in [13].

Besides [5] and [13], iterative algorithms based on adaptive aggregation have also
been studied in other contexts. An adaptive clustering algorithm that converges in a
finite number of iterations is proposed in [20] for the case of variable aggregation. In
stochastic programming, a classic iterative solution scheme, under the name of “se-
quential approximation method” or “successive discrete approximation,” is designed
to improve the bounds for the expected second-stage objective value via partition
refinements. (See [8, 12, 18, 19], and see [21] for a more general overview.) In that
framework, the partition is at the distribution level, which is performed on the sup-
port of the continuous distribution of the random variables rather than on a scenario
set. The corresponding partition-based problem is constructed using conditional ex-
pectation, and dual multipliers of a partition-based problem are then used to perform
partition refinement. This idea has been used in the level decomposition solution
framework [14]. It has also been used for solving stochastic programs that arise in a
variety of applications, e.g., stochastic network interdiction problems [10] and stochas-
tic appointment scheduling problems [11]. Empirically, the size of the partition is not
too large before a good approximation solution is obtained in these cases. However,

PARTITION-BASED APPROACH FOR STOCHASTIC PROGRAMS 1347

the partition-based problem may still be hard to solve due to the need to evaluate
conditional expectations, although there has been some work that has aimed to re-
duce this effort via stratified sampling [26]. Our approach uses sampling in a different
way. We assume that a (possibly very large) set of scenarios is given a priori, which
is motivated by the SAA approach, and we directly perform the partition on this
given scenario set. Therefore, the partition is performed at the optimization level
rather than the distribution level. In this context, an iterative refinement algorithm
that converges finitely for the multistage setting is proposed in [9]. We propose an
alternative approach for refining the partition using the information of dual optimal
solutions, and we show how this refinement strategy can lead to small partitions in
the case of simple recourse.

In the SAA framework, the idea of adaptive aggregation has been applied to
manage the optimality cuts in the master problem to enhance the computational per-
formance of Benders decomposition for solving two-stage stochastic programs [35] and
multistage stochastic programs [38]. Trukhanov, Ntaimo, and Schaefer [35] introduce
an adaptive multicut method that generalizes the single-cut (L-shaped) and multicut
methods. The method dynamically adjusts the aggregation level of the optimality
cuts in the master program. The key difference between the method in [35] and our
proposed approach is in the form of the master problem solved at each iteration. The
master problem in [35] has the form of a Benders master problem, whereas our mas-
ter problem is the partition problem (1.4), which introduces aggregate second-stage
variables. Our methods also differ in the techniques used for updating partitions.

In section 2, we describe a general adaptive partition-based algorithm for solving
two-stage stochastic programs with fixed recourse. In section 3, we analyze the case
of simple recourse structure and show that a small completely sufficient partition
exists. We show how the approach can be appied to problems with expected value
constraints in section 4, and in section 5, we compare the computational performance
of the proposed approach with alternative approaches.

2. The adaptive partition-based algorithm. A general adaptive partition-
based algorithm works as follows. We start with an initial partition, e.g., N = {N}.
We solve the partition-based master problem (1.4) with respect to this partition N
and let the first-stage solution be x̂. The obtained optimal objective value zN is
then a lower bound for the optimal objective value z∗ of the original scenario-based
problem (1.3). Given a fixed first-stage solution x̂, for each scenario k, we solve the
second-stage problem (1.2) or its dual problem:

(2.1) fk(x̂) = max
λk∈R

m2
+

{(hk − T kx̂)�λk |W�λk ≤ d}.

If the second-stage problem (1.2) with this fixed x̂ is infeasible, we solve the
feasibility problem associated with the second-stage problem (1.2) by solving

(2.2) gk(x̂) := max
μk∈R

m2
+

{(hk − T kx̂)�μk |W�μk ≤ 0, e�μk ≤ 1}.

If gk(x̂) > 0, then the second-stage problem (1.2) with fixed x̂ is infeasible.
If the second-stage problems (1.2) are feasible for all scenarios k ∈ N , then z(x̂) :=∑

k∈N fk(x̂)+ c�x̂ is an upper bound for z∗. When the gap between the current best
upper bound zU and lower bound zN is larger than the termination threshold ε, we
can reduce the gap by performing a refinement on the current partition N .

Definition 2.1. N ′ is a refinement of N if ∀P ′ ∈ N ′, P ′ ⊆ P for some P ∈ N ,
and |N ′| > |N |.

1348 YONGJIA SONG AND JAMES LUEDTKE

It is clear that zN ′ ≥ zN if N ′ is a refinement of N . If (1.2) are feasible for all
scenarios k ∈ N with a relaxation solution x̂, we need to perform refinement on N
when N is not sufficient. We also need to perform refinement if for some scenario
k ∈ N , (1.2) is infeasible with x̂. In the extreme case, partition {{k}k∈N} is a
refinement of all possible partitions except itself. Therefore, an algorithm based on
iterative partition refinement returns a sufficient partition in a finite number of steps.
We describe this algorithm in Algorithm 1.

Algorithm 1. An iterative partition refinement algorithm for solving

(1.3).

Suppose a stopping threshold ε ≥ 0 and an initial partition N0 are given.
Set zU := +∞ and t := 0.
repeat
Solve (1.4) with respect to Nt, obtain the optimal objective value zNt and the
corresponding optimal solution x̂.
Solve (1.2) for each scenario k ∈ N with x̂.
if ∃k ∈ N that (1.2) is infeasible, then
Refine Nt to obtain Nt+1.

else
Update zU ← min{zU , z(x̂)}.
Refine Nt to obtain Nt+1 if zU − zNt > ε.

end if
t← t+ 1.

until zU − zNt ≤ ε.

Proposition 2.2. Algorithm 1 converges in finitely many iterations.

2.1. Construction of a completely sufficient partition from an optimal
solution. A completely sufficient partition can be constructed from a dual optimal
solution (π̂, λ̂) of (1.3) when the deterministic feasible region X is a polyhedral set,
X = {x ∈ R

m2
+ | Ax = b}, where A ∈ R

m1×n1 , b ∈ R
m1 . Without loss of generality,

we assume n1 ≥ m1. The dual of (1.3) is

max b�π +
∑
k∈N

(hk)�λk(2.3a)

s.t. A�π +
∑
k∈N

(T k)�λk ≤ c,(2.3b)

W�λk ≤ d ∀k ∈ N,(2.3c)

π free, λk ∈ R
m2
+ ∀k ∈ N.(2.3d)

Proposition 2.3. Let (π̂, λ̂) be an optimal solution of (2.3) and N be a partition

of the scenario set N that satisfies λ̂k = λ̂k′ ∀k, k′ ∈ P, P ∈ N . Then partition N is
completely sufficient.

Proof. (This argument is inspired by arguments in [5].) Given a partition N , the
dual of the partition-based master problem (1.4) with X = {x ∈ R

n2
+ | Ax = b} is

equivalent to (2.3) plus the set of constraints λk = λk′ ∀k, k′ ∈ P, P ∈ N , using a
vector λP for each component P ∈ N to represent these common vectors λk ∀k ∈ P .
Moreover, adding the constraints λk = λk′ ∀k, k′ ∈ P, P ∈ N to (2.3) does not change

its optimal objective value, since an optimal solution λ̂ satisfies these.

PARTITION-BASED APPROACH FOR STOCHASTIC PROGRAMS 1349

Proposition 2.3 provides a completely sufficient partition N using an optimal dual
solution when X is a polyhedron. In section 3, we derive an upper bound for the size
of this partition in the special case of a two-stage stochastic program with simple
recourse.

2.2. Solution guided refinement. Any refinement strategy can be used in
Algorithm 1, although a refinement rule that converges to a small sufficient partition
with a small number of iterations would be preferred. When X is a polyhedron,
given an optimal solution of (2.3), we can construct a completely sufficient partition
according to Proposition 2.3. However, during Algorithm 1, we only have a relaxation
solution x̂ that is optimal to the current partition-based master problem (1.4). The
idea of solution guided refinement is to use x̂ to guide the refining operation.

Given a first-stage solution x̂ and a set of scenarios P ⊆ N , we define a second-
stage problem with respect to x̂ and P :

(2.4) f̄P (x̂) := min
yP∈R

n2
+

{d�yP |WyP ≥ h̄P − T̄P x̂}.

If (1.2) is feasible for all k ∈ P , then f̄P (x̂) is a lower bound for
∑

k∈P fk(x̂).
In fact, any dual optimal solution λ̄P of (2.4) is feasible to (2.1) for each scenario
k ∈ P . Therefore, f̄P (x̂) =

∑
k∈P (h

k −T kx̂)�λ̄P ≤∑
k∈P fk(x̂). Lemma 2.4 shows a

sufficient and necessary condition when this lower bound is exact.
Lemma 2.4. Let x̂ ∈ X and P ⊆ N . Assume problem (1.2) is feasible for each

k ∈ P . Then f̄P (x̂) =
∑

k∈P fk(x̂) if and only if there exists a vector λ̄ ∈ R
m2
+ such

that λ̄ is an optimal solution of (2.1) for each scenario k ∈ P .
Proof. We first prove sufficiency. Given a vector λ̄ ∈ R

m2
+ that is an optimal

solution of (2.1) for each scenario k ∈ P , λ̄ is a feasible dual solution to (2.4).
Therefore, f̄P (x̂) ≥ (h̄P − T̄P x̂)�λ̄ =

∑
k∈P (h

k − T kx̂)�λ̄ =
∑

k∈P fk(x̂), and hence
f̄P (x̂) =

∑
k∈P fk(x̂).

We now prove necessity. Supposing there is no vector λ̄ ∈ R
m2
+ such that λ̄

is an optimal solution of (2.1) for all k ∈ P , we show that f̄P (x̂) <
∑

k∈P fk(x̂).

In fact, for any dual optimal solution λ̂ of (2.4), because of the assumption, there

exists at least one scenario k̄ ∈ P such that λ̂ is not optimal to (2.1) for scenario k̄.

For this scenario k̄, fk̄(x̂) > (hk̄ − T k̄x̂)�λ̂, and for all other scenarios k ∈ P, k 	=
k̄, fk(x̂) ≥ (hk − T kx̂)�λ̂. Therefore,

∑
k∈P fk(x̂) = fk̄(x̂) +

∑
k∈P,k �=k̄ fk(x̂) >

f̄P (x̂).
If x̂ is an optimal first-stage solution of (1.4) with respect to a partition N , then

c�x̂ +
∑

P∈N f̄P (x̂) = zN . Theorem 2.5 shows a sufficient and necessary condition
when zN = z∗.

Theorem 2.5. Let x̂ be an optimal solution of the partition-based master problem
(1.4) with partition N , then zN = z∗ if and only if there exists a set of optimal
solutions {λk}k∈N of (2.1) with respect to x̂ that satisfies λk = λk′ ∀k, k′ ∈ P, P ∈ N .

Proof. Since x̂ is an optimal solution of the partition-based master problem (1.4)
with partition N , zN = c�x̂ +

∑
P∈N f̄P (x̂). According to Lemma 2.4, for each

component P ∈ N , f̄P (x̂) =
∑

k∈P fk(x̂) if and only if there exists a vector λ̄ ∈ R
m2
+

such that λ̄ is an optimal solution of (2.1) for each scenario k ∈ P . Therefore,
zN = z(x̂) = c�x̂ +

∑
k∈N fk(x̂) if and only if

∑
P∈N f̄P (x̂) =

∑
k∈N fk(x̂), which

holds if and only if there exists a set of optimal solutions {λk}k∈N of (2.1) that satisfies
λk = λk′ ∀k, k′ ∈ P, P ∈ N .

1350 YONGJIA SONG AND JAMES LUEDTKE

The consistency requirement that λk = λk′ ∀k, k′ ∈ P, P ∈ N is restrictive,
especially when λk is not a scalar. However, if the fixed recourse matrix W has a
special structure such that there is only a small number of distinct values that an
extreme point optimal solution λk of (2.1) could take, then it is hopeful that there
exists a small sufficient partition.

Theorem 2.5 can be used as a guide for how to refine a partition given a solution
x̂. If there exists a component P ∈ N with k 	= k′ ∈ P such that λk 	= λk′

, we can
perform a refinement on partition N by splitting this component P according to the
different values that λk, k ∈ P take. In particular, if we split a partition P into subsets
that correspond to all different values {λk}k∈P , we call it a complete refinement with
respect to {λk}k∈P .

We perform refinement in a similar way when there exists some scenario k ∈ P
such that problem (1.2) is infeasible. In this case, we solve (2.2) for scenarios k
that are infeasible and perform refinements for these scenarios using dual solutions
μ̄k to guide the refinement. Algorithm 2 summarizes our solution-guided refinement
strategy. In our implementation of the algorithm, the check that λk = λk′

is replaced
with the relaxed criterion |(λk

j − λk′
j)/(λk

j + 10−5)| < δ ∀j, where δ = 10−5 is a given
threshold. A less restrictive heuristic strategy based on “quasi-collinearity” [24] could
also be applied.

Algorithm 2. Complete refinement of a component P .
Consider a partition component P ∈ N , and suppose that a solution x̂ of (1.4) is
given. Let P1, P2 = ∅.
for scenario k ∈ P do
Solve the second-stage problem (2.1) with x̂.
if (2.1) is feasible, then
Obtain a dual optimal solution λk, and let P1 = P1 ∪ {k}.

else
Solve the second-stage feasibility problem (2.2) with x̂. Obtain a dual optimal
solution μk, and let P2 = P2 ∪ {k}.

end if
end for
Let {K1

1 ,K
2
1 , . . . ,K

M1
1 } be a partition of P1 that λk = λk′ ∀k, k′ ∈ Km

1 ,m =

1, 2, . . . ,M1, and let {K1
2 ,K

2
2 , . . . ,K

M2
2 } be a partition of P2 that μk = μk′ ∀k, k′ ∈

Km
2 ,m = 1, 2, . . . ,M2.

Remove the component P from partition N .
Add components K1

1 ,K
2
1 , . . . ,K

M1
1 and K1

2 ,K
2
2 , . . . ,K

M2
2 to partition N .

The complete refinement strategy fully exploits the information of {λk}k∈P based
on the current relaxation x̂. If (1.2) is feasible for all scenarios k ∈ P , after the com-
plete refinement, the lower bound f̄P (x̂) matches the true value

∑
k∈P fk(x̂) according

to Lemma 2.4. If we perform a complete refinement for all the components, which
we call a fully complete refinement, then the lower bound c�x̂+

∑
P∈N f̄P (x̂) exactly

matches the true objective z(x̂).

2.3. Adaptive partition with merging. Iterative refinement on a partition
leads to finite convergence of Algorithm 1. However, the size of the partition-based
master problem increases as more refinements are performed. In this section, we
consider putting some components in a partition back together without weakening
the relaxation bound. Proposition 2.6 shows that if the deterministic feasible set X

PARTITION-BASED APPROACH FOR STOCHASTIC PROGRAMS 1351

in (1.3) is a polyhedron, e.g., X = {x ∈ R
n1
+ | Ax = b}, then we are able to merge

components using the information of the dual optimal solution of (1.4).
Proposition 2.6. Given a partition N = {P1, P2, . . . , PL}, let {λ̄P }P∈N be

a dual optimal solution of (1.4) with this partition. Let {I1, I2, . . . , IL′} be a parti-
tion over {1, 2 . . . , L} that is composed of sets of indices that correspond to the same
{λ̄P }P∈N values, and let N̄ = {⋃l∈I1

Pl,
⋃

l∈I2
Pl, . . . ,

⋃
l∈IL′ Pl}. Then zN = zN̄ .

Proof. The conclusion is immediate by applying Proposition 2.3 on partition N ,
considering each component P ∈ N as a scenario.

Algorithm 3. Merging operation.

Suppose a partition N = {P1, P2, . . . , PL} and an optimal dual solution {λ̄P }P∈N
of (1.4) with N are given.
Let {I1, I2, . . . , IL′} be a partition over {1, 2, . . . , L} such that λPl = λPl′ ∀l, l′ ∈
It, t = 1, 2, . . . , L′.
Return a merged partition N̄ = {⋃l∈I1

Pl,
⋃

l∈I2
Pl, . . . ,

⋃
l∈IL′ Pl}.

The merging operation is given in Algorithm 3. The motivation of this merging
operation is to use a smaller partition N̄ to replace the current partition N , while
the relaxation bound of the partition-based master problem with N̄ is the same as
the one with N . This is particularly true when the fixed recourse matrix W has some
special structure that ensures that there exists a small number of distinct λ̄P values.
Let Nt be the current partition obtained after a refinement on the previous partition
Nt−1. If the lower bound is not improved after the refinement, i.e., zNt = zNt−1 , then
a cycle may be caused by the merging operation. Therefore, we only perform the
merging operation when the relaxation bound is strictly improved from the previous
iteration. We obtain a variant of Algorithm 1 by performing the merging operation
before we refine the current partition Nt if the relaxation bound zNt is strictly better
than zNt−1 . This merging strategy is also mentioned in [5].

The merging operation cannot be generalized to nonpolyhedral set X , since we
do not have the dual solutions that guide the merging operation as in the case of
polyhedral X . Please refer to [33] for a heuristic extension for the special case when
X is a finite set of integer vectors.

2.4. Partial refinement. The aforementioned refinement strategy is based on
the current relaxation solution x̂, which may not be the solution that gives the current
best upper bound. We now propose a refinement strategy that only performs the
merging operation if x̂ is the current best solution, i.e., zU = z(x̂). If z(x̂) > zU , we
can perform a partial refinement on N . The motivation is that, since x̂ is not the
current best solution, it is unnecessary to perform a complete refinement to match
the lower bound f̄P (x̂) with the true value

∑
k∈P fk(x̂) for each component P ∈ N .

We only need to refine the partition just enough such that c�x̂+
∑

P∈N f̄P (x̂) > zU ,
which guarantees that x̂ is suboptimal with respect to the refined partition. While a
complete refinement also serves the purpose, it yields a larger refined partition. We
perform partial refinement in a greedy manner described in Algorithm 4.

In summary, we propose several different refinement and merging strategies.
Given a solution x̂ of the partition-based master problem (1.4) with partition N :

1. No-Merge: Perform fully complete refinement of N , i.e., a complete refine-
ment (see Algorithm 2) on each component P ∈ N with respect to x̂.

2. Merge-All: If the relaxation bound of the current partition improves the
previous one, we perform a merging operation according to Algorithm 3 and

1352 YONGJIA SONG AND JAMES LUEDTKE

Algorithm 4. Partial refinement.
Suppose a partition N , an optimal solution x̂ of (1.4) with respect to N , the current
best upper bound zU , and a set of optimal solutions {λk}k∈N of (2.1) with x̂ are
given.
for each component P ∈ N do
Calculate the true objective value

∑
k∈P fk(x̂).

Calculate the lower bound f̄P (x̂).
end for
Sort the gap

∑
k∈P fk(x̂)− f̄P (x̂) in decreasing order.

Sequentially put components P into a collection P according to this order until
zN +

∑
P∈P(

∑
k∈P fk(x̂)− f̄P (x̂)) > zU .

Perform complete refinements for all components in P with respect to {λk}k∈N .

then apply the fully complete refinement on the merged partition. If the
relaxation bound is not improved, we skip the merging operation and perform
the fully complete refinement directly on the current partition.

3. Merge-Partial: First, we determine if solution x̂ is the current best solution
according to the upper bound z(x̂). If x̂ is the current best solution, we
perform a merging operation according to Algorithm 3 and then apply the
fully complete refinement on the merged partition. Otherwise, we perform
partial refinement according to Algorithm 4 with respect to the current x̂ and
the best bound so far.

We show their performance in our computational experiments in section 5.

2.5. Relationship to Benders decomposition. We next discuss the relation-
ship between Algorithm 1 and Benders decomposition (see, e.g., [7]) and the L-shaped
algorithm [36] (i.e., the single-cut variant of Benders decomposition). The idea of
Benders decomposition is to iteratively approximate the epigraph of function fk(x),
Fk := {(x, θk) ∈ R

n1 × R | θk ≥ fk(x)} ∀k ∈ N , by constructing a convex relaxation
defined by a set of valid inequalities that are generated during the algorithm. This
relaxation is also called the Benders master problem as follows:

min
x∈X

c�x+
∑
k∈N

θk(2.5a)

s.t. θk ≥ Gkx+ gk, (Gk, gk) ∈ Gk, ∀k ∈ N,(2.5b)

Lkx ≥ lk, (Lk, lk) ∈ Lk, ∀k ∈ N,(2.5c)

where Gk and Lk are collections of optimality cuts and feasibility cuts, respectively,
which are valid inequalities that have been generated for each scenario k ∈ N so far
through the algorithm. The Benders master problem is a relaxation of (1.3) in that
it contains only a partial set of constraints that are necessary to describe the set
Fk. Given an optimal solution (x̂, {θ̂k}k∈N) of the Benders master problem (2.5), the
second-stage problem (1.2) is solved for each k ∈ N . If (1.2) is feasible, we obtain

an optimal dual solution λ̂k from (2.1). The inequality θk ≥ (hk − T kx)�λ̂k is then

valid for Fk, and if it is violated by (x̂, {θ̂k}k∈N), we call it a Benders optimality
cut and add it to the collection Gk in (2.5b). If the second-stage problem (1.2) is
infeasible, we obtain an extreme direction μ̄k associated with the cone defined by
{μk ∈ R

m2
+ | W�μk ≤ 0} by solving (2.2). Then (hk − T kx)�μ̄k ≤ 0 is a valid

inequality that cuts off the current relaxation solution x̂, which we call a Benders
feasibility cut, and we add it to the collection Lk in (2.5c). The single-cut variant

PARTITION-BASED APPROACH FOR STOCHASTIC PROGRAMS 1353

of Benders decomposition uses only a single variable Θ to approximate the epigraph
of

∑
k∈N fk(x) and uses optimality cuts of the form Θ ≥ ∑

k∈N (hk − T kx)�λ̂k (so
that a single cut is obtained per iteration). Benders decomposition is similar to the
adaptive partition-based approach in the sense that a subproblem (1.2) with fixed x̂
is also solved for each scenario. The key difference is in the master problem solved by
the two methods. Benders decomposition solves a master problem of the form (2.5),
which is then updated by adding Benders cuts. The master problem in the proposed
adaptive partition-based approach is the problem (1.4), which is updated by changing
the partition, leading to a change in both the constraints and the variables (the
aggregated second-stage variables) of the master problem. Improvements of Benders
decomposition can be obtained by using regularization techniques, such as those in
[22, 23, 30]. In section 5, we compare our adaptively refined partition approach to
basic variants of Benders decomposition and to the level method [22].

A crucial goal of the partition refinement approach is to obtain a small sufficient
partition, and for the case of simple recourse, we show in section 3 that there exists a
sufficient partition whose size is independent of the number of scenarios. This result
is similar to the result in [31] regarding critical scenarios in the context of Benders
decomposition. Specifically, Ruszczyński and Świȩtanowski [31] define critical sce-
narios as being those scenarios whose cuts define more than one active constraint in
the Benders master problem, and they observe that the number of such scenarios
is bounded by the number of first-stage decision variables. This observation is then
used to significantly reduce the size of the master problem. The most significant
difference between the concept of critical scenarios and our work is that the master
problem being solved is different. Critical scenarios are used for reducing the master
problem in Benders decomposition. Since the master problem we use involves both
first-stage variables and (aggregated) second-stage variables, the results of [31] are not
applicable. In particular, because our master problem includes these additional vari-
ables, the analysis to demonstrate existence of a small sufficient partition is different.
Indeed, we are only able to show that such a partition exists under the assump-
tion of simple recourse, whereas the bound on critical scenarios does not require this
assumption.

3. Existence of a small completely sufficient partition for stochastic
programs with simple recourse. A two-stage stochastic LP with joint simple
recourse can be written as follows:

min c�x+
∑
k∈N

yk(3.1a)

s.t. Ax = b,(3.1b)

T kx+ yke ≥ hk ∀k ∈ N,(3.1c)

x ∈ R
n1
+ , yk ∈ R+, ∀k ∈ N,(3.1d)

where e = (1, 1, . . . , 1)�, c ∈ R
n1 , A ∈ R

m1×n1 , b ∈ R
m1 , and T k ∈ R

m2×n1 , hk ∈ R
m2

for k ∈ N . This model penalizes the expected maximum violation among all the
constraints in a scenario. However, a model in which a penalty is imposed separately
for each individual constraint can be reduced to this case by considering each row of
each scenario as a different scenario. Thus, if the original problem has N scenarios and
m2 rows in each scenario, the modified problem would have N ′ = Nm2 scenarios and
a single row in each scenario. Our results do not depend on the number of scenarios,
so the increase in number of scenarios from this reduction is not a concern.

1354 YONGJIA SONG AND JAMES LUEDTKE

The penalty coefficient d = 1 for yk variables in the objective of (3.1) is without
loss of generality. Problems that have scenario-dependent coefficients dk ∈ R+ can be
transformed into (3.1). In these cases, we can introduce a new variable ξk := dkyk for
each scenario k ∈ N , and constraint (3.1c) is equivalent to dkT

kx+ ξke ≥ dkh
k. We

can then redefine dkT
k, dkh

k as T k, hk, respectively, so that we have a formulation
(3.1) with dk = 1 ∀k ∈ N .

Let x̂ be a first-stage optimal solution of the partition-based master problem for
(3.1) with partition N . With fixed x̂, we solve a trivial second-stage problem for each
scenario k ∈ N ,

(3.2) min
yk∈R+

{yk | yke ≥ hk − T kx̂},

whose dual is

(3.3) max
λk∈R

m2
+

{(hk − T kx̂)�λk | e�λk ≤ 1}.

Based on the structure of (3.3), there are at mostm2+1 possible values for an optimal

solution λ̂k of (3.3): if hk
i − T k

i x̂ ≤ 0 ∀i = 1, 2, . . . ,m2, then λ̂k
i = 0 ∀i; otherwise,

λ̂k
ī = 1, and λ̂k

i = 0 ∀i 	= ī, where ī ∈ argmaxi{hk
i − T k

i x̂}.
Algorithm 5 is an adaptation of Algorithm 2 in the case of simple recourse. We

see that after a fully complete refinement, the size of the refined partition is at most
m2 + 1 times as large as the original partition.

Algorithm 5. Complete refinement for simple recourse.

Suppose that a partition N and a set of optimal solutions {λ̂k}k∈N of (3.3) with
fixed x̂ are given.
Let K0 = {k ∈ N | λ̂k = 0}.
Let Ki = {k ∈ N | λ̂k = ei} ∀i = 1, 2, . . . ,m2.
for each P ∈ N do
Remove component P from partition N .
Add components P ∩K0, P ∩K1, . . . , P ∩Km2 if they are nonempty.

end for

We next show that because of simple recourse, there exists a small completely
sufficient partition. Let (π̂, λ̂) be an extreme point optimal solution of the dual of
(3.1):

max b�π +
∑
k∈N

(hk)�λk(3.4a)

s.t. A�π +
∑
k∈N

(T k)�λk ≤ c,(3.4b)

e�λk ≤ 1 ∀k ∈ N,(3.4c)

π free, λk ∈ R
m2
+ ∀k ∈ N.(3.4d)

Define K1 = {k ∈ N | λ̂k = 0},K2(i) = {k ∈ N | λ̂k = ei}, i = 1, 2, . . . ,m2, and
K3 = N \ (K1

⋃
(
⋃m2

i=1 K2(i))).
Proposition 3.1. Partition N = {K1,K2(1),K2(2), . . . ,K2(m2), {k}k∈K3} is

completely sufficient, and |K3| ≤ n1 −m1.
Proof. According to Proposition 2.3, N is completely sufficient. We now show

that |K3| ≤ n1−m1. According to the definition, K3 is composed of the following two

PARTITION-BASED APPROACH FOR STOCHASTIC PROGRAMS 1355

subsets: K=
3 = {k ∈ N |∑i λ̂

k
i = 1}, i.e., there are at least two nonzero components

in vector λ̂k that sum up to 1, and K<
3 = {k ∈ N | ∑i λ̂

k
i < 1}. For any extreme

point solution of formulation (3.4), the number of binding constraints is no less than
the number of variables, m1+ |N |m2. Among these binding constraints, at most n1 of
them come from the side constraints (3.4b); thus, there are at least m1 + |N |m2− n1

binding constraints in the system {λk
i ≥ 0,

∑m2

i=1 λ
k
i ≤ 1}. Let G be the set of (k, i)

pairs for all the nonzero components λk
i in K=

3 . |G| ≥ 2|K=
3 | since we have at least

two nonzero components in each scenario. Let T be the set of (k, i) pairs for all the
fractional components in K<

3 . Since we have at least one nonzero component in each
scenario, |T | ≥ |K<

3 |. We summarize the number of variables and number of binding
constraints for all cases as follows.

Index Binding constraints Size

k ∈ K1 λk
i = 0 ∀i |K1|m2

k ∈ K2
∑

i λ
k
i = 1, λk

i = 0,∀i �= ī |K2|+ |K2|(m2 − 1) = |K2|m2

k ∈ K=
3

∑
i λ

k
i = 1, λk

i = 0,∀(k, i) /∈ G |K=
3 |+ |K=

3 |m2 − |G|
k ∈ K<

3 λk
i = 0 ∀(k, i) /∈ T |K<

3 |m2 − |T |

We need at least m1 + |N |m2 − n1 binding constraints out of all possible binding
constraints shown in the above table. Thus,

(|K1|m2) + (|K2|m2) + (|K=
3 |+ |K=

3 |m2 − |G|) + (|K<
3 |m2− |T |) ≥ m1 + |N |m2− n1.

Recalling that |K1| + |K2| + |K=
3 | + |K<

3 | = |N |, we then have |G| + |T | ≤
|K=

3 | + (n1 − m1). Next, because |G| ≥ 2|K=
3 | and |T | ≥ |K<

3 |, it follows that
2|K=

3 |+ |K<
3 | ≤ |G|+ |T | ≤ |K=

3 |+ (n1 −m1), from which we conclude that |K=
3 |+

|K<
3 | = |K3| ≤ n1 −m1.
The size of this completely sufficient partition, at most n1 − m1 + m2 + 1, is

independent of the number of scenarios |N | in the model. We only need to solve a
partition-based master LP of a much smaller size than (3.1) to obtain an optimal
solution if n1 − m1 + m2 + 1 is very small compared to |N |. In the appendix, we
provide an example that shows that the bound n1−m1 +m2 +1 is tight for the case
m2 = 1 and m1 = 0, in which case the bound becomes n1 + 2.

Proposition 3.1 shows that the number of components in the constructed com-
pletely sufficient partition N can be small in the case of simple recourse. However,
it does not guarantee that the partition-based algorithm will yield such a small par-
tition, nor does it provide a limit on the number of iterations that the partition-
based algorithm will take before convergence. Song [33] gives an example where the
partition-based algorithm takes |N |−1 iterations to converge to a completely sufficient
partition, and the size of this completely sufficient partition is |N |, while there exists
a completely sufficient partition of size 3. This undesirable phenomenon of having
a large number of iterations is caused by the lack of information about the optimal
solution x∗ in the intermediate steps. However, according to Proposition 3.1, after
the merging operation, a partition-based master problem with a partition of size at
most 3 can be solved at each iteration for this example.

4. Adaptive partition-based approach for expected value constrained
programs. In this section, we study how the adaptive partition-based approach can
be applied for solving an expected value constrained two-stage stochastic program as

1356 YONGJIA SONG AND JAMES LUEDTKE

follows:

(4.1) min
x∈X

{
c�x

∣∣∣∣∣
∑
k∈N

fk(x) ≤ B

}
,

where B is a scalar that can be seen as the total available budget. An interesting
special case of (4.1) is the LP relaxation of a chance-constrained LP.

Given a partition N , the corresponding partition-based master problem is

min c�x(4.2a)

s.t. T̄Px+WyP ≥ h̄P , ∀P ∈ N ,(4.2b) ∑
P∈N

d�yP ≤ B,(4.2c)

x ∈ X, yP ∈ R
n2
+ ∀P ∈ N .(4.2d)

Given a first-stage solution x̂, (4.1) is a pure feasibility problem. We evaluate
fk(x̂) separately for each scenario k ∈ N and then check the violation value of the
budget constraint: v(x̂) := max{0,∑k∈N fk(x̂) − B}. Similar to the definition of
ε-sufficient partition, we define an ε-feasible partition as follows.

Definition 4.1. A partition N is ε-feasible to (4.1) if there exists an opti-
mal solution x̂ of the partition-based problem (4.2) with respect to N that satisfies
v(x̂) ≤ ε.

Given a threshold ε ≥ 0, we can modify Algorithm 1 to construct an ε-feasible
partition by changing the termination criterion into v(x̂) ≤ ε.

We next show that there exists a small completely sufficient partition for expected
value constrained programs with simple recourse. An expected value constrained
program can be written in extensive form as

min c�x(4.3a)

s.t. T kx+ yke ≥ hk ∀k ∈ N,(4.3b)

Ax = b, x ∈ R
n1
+ ,(4.3c) ∑

k∈N

yk ≤ B,(4.3d)

0 ≤ yk ≤ uk ∀k ∈ N,(4.3e)

where uk ≥ 0 ∀k ∈ N and B ≥ 0. Constraints (4.3e) mean that we may not have
relatively complete recourse in this case.

We include the constraints (4.3e) so that the LP relaxation of a chance-constrained
LP with finite scenarios fits this structure, as we now describe. Let T̃ be a random
matrix, h̃ be a random vector, and ε be a given risk tolerance. Then a chance-
constrained LP can be written as

min c�x(4.4a)

s.t. P(T̃ x ≥ h̃) ≥ 1− ε,(4.4b)

Ax = b, x ∈ R
n1
+ .(4.4c)

We consider a finite scenario approximation of (4.4). Suppose that a set of sce-
narios N is given, where each scenario k ∈ N happens with probability pk, and the
corresponding realization of T̃ and h̃ in that scenario k is T̂ k and ĥk, respectively.

PARTITION-BASED APPROACH FOR STOCHASTIC PROGRAMS 1357

Then the chance-constrained program (4.4) can be formulated as a mixed integer
program (MIP) [4]. Introducing a binary variable zk for each scenario k ∈ N , the
chance-constrained LP (4.4) can be written as

min c�x(4.5a)

s.t. T̂ kx ≥ ĥk − M̂kzk ∀k ∈ N,(4.5b) ∑
k∈N

pkzk ≤ ε,(4.5c)

Ax = b, x ∈ R
n1
+ , z ∈ {0, 1}|N |,(4.5d)

where M̂k ∈ R
m2 is a chosen big-M vector such that when zk = 1, inequalities

T̂ kx ≥ ĥk − M̂k in scenario k do not cut off any feasible solution. We assume that
M̂k

i > 0 ∀k ∈ N, i = 1, 2, . . . ,m2.
The LP relaxation of (4.5) is the engine of a branch-and-bound based MIP solver

for solving chance-constrained LPs and can be a bottleneck when the size of the
scenario set |N | is large. The partition-based approach can be applied to solve this
LP relaxation by reformulating (4.5) into (4.3): first, redefine variable zk as pkzk,

and then define scenario data T k
i :=

T̂k
i

pkMk
i

and hk
i :=

ĥk
i

pkMk
i

. Problem (4.3) can also

be seen as a reformulation of a linear program with integrated chance constraints, as
pointed out in [38].

We next show that given an optimal solution x̂ of the partition-based expected
value constrained master problem (4.2) with N , if the consistency requirement that
λk = λk′ ∀k, k′ ∈ P, P ∈ N is satisfied, then partition N is completely sufficient for
the expected value constrained problems (4.2).

Proposition 4.2. Let x̂ be an optimal solution of (4.2) with partition N . If
there exists a set of optimal solutions {λk}k∈N of (2.1) with x̂ that satisfies λk =
λk′ ∀k, k′ ∈ P, P ∈ N , then x̂ is optimal to (4.1).

Proof. We just need to show that x̂ is feasible to (4.1). According to Lemma
2.4 and the assumption,

∑
P∈N f̄P (x̂) =

∑
k∈N fk(x̂). Since x̂ is an optimal solution

of (4.2) with partition N ,
∑

P∈N f̄P (x̂) ≤ B, and hence
∑

k∈N fk(x̂) ≤ B, i.e., x̂ is
feasible to (4.1).

The partial refinement strategy described in Algorithm 4 cannot be applied di-
rectly in the expected value constrained stochastic program, where there is no upper
bound to keep track of. In this case, we use the violation value of the constraint in
(4.1), v(x̂) = max{0,∑k∈N fk(x̂) − B}, as the metric for how feasible a solution x̂
is. We then apply this metric as the criterion in Algorithm 4 to determine if x̂ is the
current best solution.

Similar to the case of two-stage stochastic LPs with simple recourse, the following
result shows that there are at most n1 − m1 + m2 + 1 distinct vectors in the set
{(λ̂k, γ̂k), k ∈ N} for any extreme point optimal solution (λ̂, β̂, ŷ, γ̂) of the dual of
(4.3):

max b�π +
∑
k∈N

(hk)�λk −Bβ −
∑
k∈N

ukγk(4.6a)

s.t. A�π +
∑
k∈N

(T k)�λk ≤ c,(4.6b)

m2∑
i=1

λk
i − β − γk ≤ 0 ∀k ∈ N,(4.6c)

1358 YONGJIA SONG AND JAMES LUEDTKE

π free, λk ∈ R
m2
+ , β ∈ R+, γk ∈ R+ ∀k ∈ N,(4.6d)

where the dual variables λk, π, β, γk correspond to constraint (4.3b), (4.3c), (4.3d),
and (4.3e), respectively.

Proposition 4.3. Let (λ̂, β̂, π̂, γ̂) be an extreme point optimal solution of (4.6).

The number of distinct vectors in the set {(λ̂k, γ̂k), k ∈ N} is at most n1−m1+m2+1.

Proof. We consider two different cases: β̂ = 0 and β̂ > 0. When β̂ = 0,
∑m2

i=1 λ̂
k
i ≤

γ̂k, and since uk ≥ 0, γ̂k =
∑m2

i=1 λ̂
k
i . Problem (4.6) is then simplified as

max b�π +
∑
k∈N

(hk − uke)
�λk(4.7a)

s.t. A�π +
∑
k∈N

(T k)�λk ≤ c,(4.7b)

π free, λk ∈ R
m2
+ ∀k ∈ N.(4.7c)

We consider the number of distinct vectors in the set {λ̂k}k∈N . For any extreme
point solution of formulation (4.7), the number of binding constraints is no less than
the number of variables, which is m1+|N |m2. We have at most n1 binding constraints
from (4.7b), thus, at least |N |m2 +m1 − n1 constraints are binding for λk

i ≥ 0 ∀k, i.
Therefore, there are at most |N |m2− (|N |m2+m1−n1) = n1−m1 nonzero values for

λ̂k
d. The number of distinct vectors in the set {λ̂k}k∈N is then at most n1 −m1 + 1.

When β̂ > 0, let K1 := {k ∈ N | ∃i = 1, 2, . . . ,m2, λ̂
k
i = β̂ei}, K2 := {k ∈ N |

λ̂k = 0}, K3 := {k ∈ N | ∃i : 0 < λ̂k
i < β̂ and

∑m2

i=1 λ̂
k
i ≤ β̂}, and K4 := {k ∈ N |∑m2

i=1 λ̂
k
i > β̂}. We now show that |K3|+ |K4| ≤ n1 −m1.

Because uk ≥ 0, we may assume γ̂k = 0 ∀k ∈ K1 ∪K2 ∪K3 and γ̂k =
∑m2

i=1 λ̂
k
i −

β̂ ∀k ∈ K4. At an extreme point optimal solution, the number of binding constraints
is no less than the number of variables in (4.6), which is m1 + 1 + |N |(1 + m2).

There are at most n1 binding constraints from (4.6b), and β̂ > 0, thus, there are
at least m1 + |N |(1 + m2) − n1 binding constraints in the other constraints. Let

T = {(k, i) | k ∈ K4, λ̂
k
i > 0} and S(k) = {i ∈ {1, 2, . . . ,m2} | λ̂k

i > 0} ∀k ∈ K3.

If
∑m2

i=1 λ̂
k
i = β̂, then |S(k)| ≥ 2; otherwise |S(k)| ≥ 1. We summarize the possible

binding constraints for each set K1,K2,K3, and K4 as follows.

Index Binding constraints Size

k ∈ K1 λk
i′ = 0, ∀i′ �= i, γ = 0,

∑m2
i=1 λ

k
i − β − γk = 0 (m2 + 1)|K1|

k ∈ K2 λk
i = 0,∀i = 1, 2, . . . , m2, γk = 0 (m2 + 1)|K2|

k ∈ K3 λk
i = 0,∀i /∈ S(k), γk = 0, if

∑m2
i=1 λ̂

k
i = β̂, |S(k)| ≥ 2 ≤ m2|K3|

k ∈ K4 λk
i = 0,∀(k, i) /∈ T,

∑m2
i=1 λ

k
i − β − γk = 0 ≤ m2|K4|

We need at least m1 + |N |(1 +m2)− n1 binding constraints, and so

|K1|(m2 + 1) + |K2|(m2 + 1) +m2|K3|+m2|K4| ≥ m1 + |N |(1 +m2)− n1.

Since |K1|+ |K2|+ |K3|+ |K4| = |N |, we have |K3|+ |K4| ≤ n1−m1. Therefore,

when β̂ > 0, the number of distinct (λ̂, γ̂) vectors is at most n1 −m1 +m2 + 1.
According to Proposition 2.3, a completely sufficient partition can be constructed

by grouping scenarios that correspond to the same (λ̂k, γ̂k) values, which has no more
than n1 −m1 +m2 + 1 components. Again, the size of this partition is independent
of the number of scenarios |N | in the model.

PARTITION-BASED APPROACH FOR STOCHASTIC PROGRAMS 1359

5. Computational experiments. We conduct computational experiments on
the proposed partition-based approach for solving two-stage stochastic LPs with sim-
ple recourse, more general two-stage stochastic LPs with random right-hand side
vectors, and LP relaxations of chance-constrained LPs.

5.1. Implementation details. We implement all algorithms within the com-
mercial MIP solver IBM Ilog CPLEX, version 12.4. We turn off the CPLEX Presolve
and set the number of threads to one. When the number of scenarios is huge, e.g.,
|N | > 10000, we found that the computational effort for doing some necessary linear
algebra operations became a bottleneck. We therefore use a numerical linear algebra
library Eigen [16] for these operations. All tests are conducted on a Linux workstation
with four 3.00GHz processors and 8Gb memory.

We report the average results over five replications for each instance and sample
size. We use the following abbreviations throughout this section:

1. AvT: Average solution time.
2. AvI: Average number of iterations.
3. AvS: Average partition size.
4. AvC: Average number of Benders cuts added.

For all our tests on stochastic LPs with simple recourse, we use a time limit of 1200
seconds, and for general two-stage stochastic LPs with random right-hand side vectors,
we use a time limit of 10800 seconds. We use “>” to denote the case when not all
replications are solved within the time limit, since in this case we calculate the average
time by using the time limit for replications that exceed the limit. We use “−” to
denote the case when none of the replications are solved within the time limit.

We compare the performance of the proposed adaptive partition-based approach
with the extensive formulation, two variants of Benders decomposition (multicut and
single-cut), and the level method [14, 22]. For each class of instances, we find that
one of the Benders variants dominated the other, and so when reporting results, we
only report results for the better of the two.

In our implementation of multicut Benders decomposition, we solve the Benders
master problem (2.5) using the dual simplex method by CPLEX. We add a Benders

cut (2.5b) when the relaxation solution (θ̂, x̂) violates the cut by more than a violation

threshold. We set this threshold to be max{1, |θ̂|} × 10−5 for instances on two-stage

stochastic LPs with simple recourse, and we set it to be max{1, |θ̂|}×10−4 for general
two-stage stochastic LP instances with random right-hand side vectors. We used the
same settings for the single-cut variant of Benders decomposition, with the difference
being in the master problem. (Only a single variable is used, and the aggregated
single cuts are added.) For our final set of test instances, the LP relaxation of chance-
constrained LPs, we apply a specialized Benders decomposition, the projection cut
formulation [34], which is similar to a specialization of the single-cut implementation
of Benders to this problem class.

Our implementation of the level method is based on using aggregate cuts as in the
single-cut version of Benders decomposition. The starting iterate solution is obtained
by solving the mean-value problem. For two-stage stochastic LPs, we set the level
parameter to λ = 0.5 according to [14]. For expected value constrained programs, we
follow the implementation of the constrained level method in [14]. We use parameters
μ = 0.5 and λ = 0.5 according to the algorithm described in section 3 of [14].

For two-stage stochastic LPs, for all methods that we test on, we terminate when
the relative optimality gap is less than 10−4. We calculate the relative optimality gap
as (UB − LB)/UB < 10−4, where UB and LB are the best upper bound and lower

1360 YONGJIA SONG AND JAMES LUEDTKE

bound obtained by the algorithm, respectively. For expected value constrained pro-
grams, we set the stopping criterion for both the partition-based approaches and the
Benders formulation as v(x̂) < |N | × 10−4, where v(x̂) is the feasibility metric intro-
duced in section 4. We set the convergence threshold as ε = 10−4 for the constrained
level method.

5.2. Two-stage stochastic LPs with simple recourse. We generate in-
stances on two-stage stochastic programs with simple recourse based on deterministic
instances from [3], including multidimensional knapsack instances cb7-1 and cb8-1.
(We denote them as p1 and p2 for simplicity.) Instances p1 have n1 = 100 decision
variables and instances p2 have n1 = 250 decision variables. Both p1 and p2 have no
first-stage constraints and m2 = 30 second-stage constraints.

We randomly generate scenarios in the following way. First, each variable j fails
to appear according to a Bernoulli distribution with the appearance probabilities
equal to some random generated parameters μj ∀j = 1, 2, . . . , n. These appearance
probabilities μj are generated according to an exponential distribution with mean 0.1
and then truncated to be between 0 and 1. A variable that does not appear in a
scenario has a zero coefficient in all the constraints for that scenario. If a variable
appears, then its weight in each row is normally distributed with mean equal to its
weight in the deterministic instance and standard deviation equal to 0.2 times the
mean. Given this distribution, we take independent samples of different sizes. In
our tests, we use two penalty coefficients, 0.01 and 0.002, denoted as “H” and “L,”
respectively.

Table 1 compares the results of the three different refinement options proposed
in section 2.5 for the instances of two-stage stochastic LPs with simple recourse.
We find that the No-Merge option yields the smallest number of iterations, but the
partition size is the largest; Merge-All yields the largest number of iterations, but
the partition size is the smallest. Merge-Partial takes slightly fewer iterations and
has slightly larger partition size than Merge-All. In most cases, Merge-Partial has
the best performance. Thus, for these instances, it is a better idea to perform the
merging operation only when x̂ is the current best solution. We also see that as the
number of scenarios increases, the average partition size does not increase much for
options Merge-All and Merge-Partial, and this average partition size is very close to

Table 1

Two-stage stochastic LPs with simple recourse instances: average solution time, number of
iterations and partition size, for three different partition refinement strategies.

Instances No-Merge Merge-All Merge-Partial
Ins |N | AvT AvI AvS AvT AvI AvS AvT AvI AvS

p1-H 5k 23.6 8 1278 3.9 19 139 4.3 21 139
10k 46.7 9 2034 4.7 24 140 4.9 24 147
20k 99.6 9 3438 5.8 26 145 5.9 25 153

p2-H 5k 39.1 9 1018 12.3 18 157 12.7 18 160
10k 75.0 10 1543 14.8 21 162 15.4 22 168
20k 135.2 10 2370 18.8 24 171 18.5 24 178

p1-L 5k 46.8 6 1429 11.2 22 200 11.9 21 215
10k 100.9 7 2373 11.7 28 195 12.1 26 209
20k 207.2 8 3803 13.3 32 195 14.0 30 214

p2-L 5k 78.3 7 1118 26.8 18 216 29.3 18 230
10k 120.1 7 1645 29.2 23 216 30.1 22 234
20k 240.8 9 2596 38.1 32 208 36.3 27 234

PARTITION-BASED APPROACH FOR STOCHASTIC PROGRAMS 1361

Table 2

Two-stage stochastic LPs with simple recourse instances: average time for the extended formu-
lation; average time and number of iterations for the multicut Benders method; average time and
number of iterations for the level method; and average time, number of iterations, and partition size
for the best partition option Merge-Partial.

Instances Ext Multi-Benders Level Merge-Partial
Ins |N | AvT AvT AvI AvC AvT AvI AvT AvI AvS

p1-H 5k 11.9 3.4 7 4278 2.9 89 4.3 21 139
10k 25.4 4.7 7 4688 5.4 93 4.9 24 147
20k 49.7 5.6 6 4840 10.5 104 5.9 25 153

p2-H 5k 26.2 7.6 7 4693 7.4 87 12.7 18 160
10k 58.3 12.0 8 5588 13.7 96 15.4 22 168
20k 121.6 16.6 8 5804 25.7 100 18.5 24 178

p1-L 5k 19.0 26.1 9 7171 2.9 63 11.9 21 215
10k 44.6 41.0 10 8518 5.1 69 12.1 26 209
20k 92.5 48.9 10 9136 9.6 75 14.0 30 214

p2-L 5k 42.9 44.4 9 7473 6.5 54 29.3 18 230
10k 99.5 69.1 9 8227 11.8 63 30.1 22 234
20k 214.2 106.3 11 9700 22.2 66 36.3 27 234

the bound shown in Proposition 3.1. However, the number of iterations increases
slightly with the number of scenarios.

Table 2 compares the results of the extensive formulation (Ext), the multicut
Benders decomposition algorithm (Multi-Benders), the level method (Level), and the
best option of the partition-based approach (Merge-Partial). (For these instances, the
multicut Benders decomposition consistently outperformed the single-cut implemen-
tation.) We see from Table 2 that the extensive formulation takes longer to solve than
the other three options. Multicut Benders works relatively well on instances with a
larger penalty coefficient in the sense that both the solution time and the number
of Benders cuts do not increase much as the scenario size increases. The adaptive
partition-based approach is competitive with the level method. In particular, for in-
stances with a larger penalty coefficient, Merge-Partial outperforms the level method.
For instances with a smaller penalty coefficient, Merge-Partial takes slightly more
time than the level method. When the penalty coefficient is smaller, the number of
iterations for the level method decreases and therefore the computational time is re-
duced. On the other hand, although the number of iterations by option Merge-Partial
is not significantly increased, the sizes of partition significantly increase, which leads
to more computational time.

5.3. General two-stage stochastic LPs with random right-hand side
vectors. We next present computational results for general two-stage stochastic pro-
gramming instances with random right-hand side vectors. These instances do not
have simple recourse structure, and so there is no known theoretical guarantee that
the proposed partition-based approach can yield a small sufficient partition. However,
we are still interested in investigating the performance of this approach on this class
of instances. Our test instances are taken from [1] and [23]. We generate samples
with different sample sizes in our experiments, following the probability distributions
specified in these instances. The sizes of these instances are described in Table 3.

Table 4 compares the results of the extensive formulation (Ext), the better be-
tween the two Benders variants (Best-Benders), the level method (Level), and the
partition-based approach with the Merge-Partial option described above. The single-

1362 YONGJIA SONG AND JAMES LUEDTKE

Table 3

Description of the test instances from [1] and [23]. (n,m) means that the number of variables
is n, and the number of constraints is m.

Instance Original scenario size First-stage size Second-stage size

stormG2 6× 1081 (185,121) (528,1259)
ssn 1070 (1,89) (175,706)

cargo 8192, 16384, 32768 (16,52) (74,186)
gbd 684450 (4, 17) (5, 10)

LandS 106 (2, 4) (7, 12)

Table 4

Two-stage stochastic programs with random right-hand side vectors: average time for the ex-
tensive formulation; average time, number of iterations, and number of cuts generated for the better
version of Benders decomposition between single-cut and multicut; average time, number of itera-
tions, and number of cuts generated for the level method; and the average time, number of iterations,
and partition size for the partition strategy Merge-Partial. Multicut Benders is reported for ssn, and
the single-cut Benders option is reported for all other instances.

Instances Ext Best-Benders Level Merge-Partial
Instance |N | AvT AvT AvI AvC AvT AvI AvT AvI AvS

stormG2 1k 61.2 276.4 84 54k 62.8 22 72.9 3 336
5k 514.5 1350.8 85 270k 348.6 24 379.3 3 1163
10k 1363.9 2838.8 87 540k 703.1 24 764.7 3 1915

ssn 1k 57.5 99.3 17 9028 803.6 181 110.1 5 381
2k 147.3 190.5 15 16k 1854.0 207 261.0 5 688
5k 4312.2 478.5 14 34k 5335.9 239 5763.5 7 1501

cargo1 8k 43.5 431.6 250 250 67.2 40 10.0 3 344
16k - 749.5 219 219 155.5 48 14.1 3 265
32k - 1254.7 204 204 282.8 48 23.0 3 269

gbd 20k 12.3 32.2 27 27 27.6 22 5.0 5 135
50k 110.0 79.5 27 27 71.1 23 12.3 5 142
100k 139.2 164.5 27 27 144.4 23 24.7 5 143

LandS 20k 13.5 20.9 19 19 9.6 9 4.7 5 41
50k 119.6 54.8 20 20 26.0 10 11.6 5 42
100k 190.3 110.8 20 20 53.1 10 23.5 5 41

1 Just one instance for each scenario size.

cut variant of Benders was better than the multicut variant for all of these instances
except for ssn. We see from Table 4 that the Merge-Partial partition-based approach
yields the best performance among all the methods on the cargo, gbd, and LandS in-
stances. For the stormG2 instances, the partition-based approach significantly outper-
forms the Ext and the best Benders option and performs similarly to the level method.
For the ssn instances, the multicut Benders method is best, and the partition-based
and level methods again perform similarly. For all of these instances, the partition-
based approach yields a small number of iterations and a small partition size. However,
the performance of the partition-based approach is relatively poor on instance ssn. In
that case, although the final partition size is not very large (due to merging), we ob-
serve that the partition sizes in the first few iterations are close to the entire scenario
size |N |, which leads to a long computational time. The computational performance
of the level method is also poor on the ssn instances because of a large number of
iterations, and most of the time is spent on iteratively solving the subproblems. The
existence of some instances (cargo, gbd, and LandS) where the partition-based ap-
proach yields the best performance motivates further study of specific structures of

PARTITION-BASED APPROACH FOR STOCHASTIC PROGRAMS 1363

Table 5

The LP relaxation of chance-constrained LPs with single-row covering instances: average solu-
tion time, number of iterations, and partition size for three different partition refinement strategies.

Instances No-Merge Merge-All Merge-Partial
Ins |N | AvT AvI AvS AvT AvI AvS AvT AvI AvS

c1-H 10k 2.8 13 369 0.8 246 31 0.6 137 47
20k 5.9 13 485 1.3 328 36 1.0 169 52
50k 26.6 14 914 3.5 497 40 2.1 230 63

c2-H 10k 3.8 12 335 0.7 152 36 0.8 133 50
20k 8.7 13 452 1.4 227 40 1.6 181 57
50k 43.1 14 866 4.2 364 44 3.3 206 68

c1-L 10k 9.1 14 770 5.7 968 51 1.9 181 84
20k 30.5 15 1335 11.1 1557 53 2.9 226 94
50k 171.8 16 2671 33.3 2955 55 6.2 311 107

c2-L 10k 27.3 14 821 18.3 797 92 9.1 205 133
20k 107.4 15 1460 32.3 1207 95 13.5 255 145
50k 547.1 16 2848 87.1 2169 10 24.8 303 173

two-stage stochastic programs where the adaptive partition-based approach may work
well.

5.4. The LP relaxation of chance-constrained LPs. We next compare per-
formance of the methods for solving the continuous relaxation of chance-constrained
LP instances. We generate stochastic covering LP instances c1 and c2 in the way
suggested in [27]: each constraint coefficient aj of a variable xj is generated uniformly
between 0.8 and 1.5, and then the coefficients are divided by 1.1; the right-hand side
value is 1 in all scenarios. Instances c1 have n1 = 50 decision variables, and instances
c2 have n1 = 100 decision variables. Both c1 and c2 have a single inequality in the
chance constraint. We use two different risk parameters ε = 0.05 and ε = 0.01, and
we denote them as “H” and “L,” respectively.

Table 5 compares the results of the three different refinement options for our in-
stances of the LP relaxation of chance-constrained LPs. We find that the behavior
of these refinement strategies in this case is similar to the two-stage stochastic LPs
with simple recourse. The No-Merge strategy yields much larger partition sizes, es-
pecially when we use a smaller risk parameter. Although it yields a smaller number
of iterations, the No-Merge strategy is not competitive with the alternative strategies
in terms of solution time. Comparing the two merging strategies, we see that Merge-
Partial yields significantly better results than Merge-All in the single-row covering
instances with a smaller risk parameter. The reason is that Merge-All requires many
more iterations, while the partition size is similar for both options. Again, this shows
the advantage of performing the merging operation based on the current best solution.
Also, similar to the case of two-stage stochastic LPs with simple recourse, we see that
the average partition size is very close to the bound shown in Proposition 4.3.

Table 6 compares the results of the extensive formulation (Ext), the specialized
version of the single-cut Benders algorithm (Single-Benders), the constrained level
method (CLM), and the best option of the partition-based approach (Merge-Partial).
We see from Table 6 that the extensive formulation exceeds the time limit for all
instances when the number of scenarios |N | is large. The adaptive partition-based
approach outperforms Single-Benders, especially when a smaller risk parameter is
used. In these cases, a large number of Benders cuts are generated that slow down
the solver. (The number of iterations is the same as the number of Benders cuts

1364 YONGJIA SONG AND JAMES LUEDTKE

Table 6

The LP relaxation for chance-constrained LPs with single-row covering instances: average time
for the extensive formulation; average time and number of iterations for the specialized single-cut
version of Benders decomposition, the projection cut formulation; average time and number of
iterations for the constrained level method; and average time, number of iterations, and partition
size for the partition strategy Merge-Partial.

Instances Ext Single-Benders CLM Merge-Partial
Ins |N | AvT AvT AvI AvT AvI AvT AvI AvS

c1-H 10k 64.5 2.3 588 0.6 74 0.6 137 47
20k 431.7 4.9 804 1.0 92 1.0 169 52
50k - 12.5 1043 1.2 82 2.1 230 63

c2-H 10k 145.6 7.9 884 1.1 96 0.8 133 50
20k >1170.3 16.2 1136 1.8 103 1.6 181 57
50k - 47.1 1625 2.5 97 3.3 206 68

c1-L 10k 33.0 5.9 948 0.8 74 1.9 181 84
20k 171.1 7.8 966 0.5 68 2.9 226 94
50k - 9.8 1014 0.8 68 6.2 311 107

c2-L 10k 97.6 158.1 2888 1.6 115 9.1 205 133
20k 689.4 184.0 3045 0.9 79 13.5 255 145
50k - 238.4 3319 2.0 93 24.8 303 173

generated, since we add the single most violated cut in each iteration). However, the
increase in the number of iterations and the partition size does not lead to significant
increase in solution time for the partition-based approach. We also see that the
partition-based approach is competitive with the constrained level method on many
of the instances. However, the constrained level method has a better performance for
instances with a smaller risk parameter, due to a small number of iterations. This
motivates further exploration on more sophisticated implementations of the proposed
partition-based approach, for example, using regularization techniques.

6. Concluding remarks. We study an adaptive partition-based approach for
solving two-stage stochastic programs with fixed recourse. We propose a general solu-
tion framework that converges in a finite number of iterations to a sufficient partition.
A solution guided refinement strategy is developed to refine the partition. When the
feasible set is polyhedral, we can further take advantage of the dual optimal solu-
tions to put some components in a partition back together, without weakening the
corresponding relaxation bound. For two-stage stochastic LPs and expected value
constrained LPs with simple recourse, we show that there exists a small completely
sufficient partition. The size of this particular partition is independent of the number
of scenarios used in the model. Our preliminary computational results show that the
proposed adaptive partition-based approach is competitive with the Benders decom-
position and the level method in two-stage stochastic LPs with simple recourse and
empirically converges to a sufficient partition of a small size very fast. We also found
that the proposed partition-based approach is competitive for two-stage stochastic
programs with fixed, but not simple, recourse, even though our theory does not guar-
antee existence of a small sufficient partition for these instances. This motivates
further investigation on specific structures where a small sufficient partition can be
obtained.

There are several directions that can be explored to further enhance the adaptive
partition-based approach. First, the partition-based approach can be integrated with
decomposition approaches. For example, we may use Benders decomposition to solve
the partition-based master problem in each step. Second, warm starting schemes may

PARTITION-BASED APPROACH FOR STOCHASTIC PROGRAMS 1365

help when solving the partition-based master problem iteratively. Third, it would be
interesting to explore the use of regularization techniques, such as those in [22, 23, 30],
with the partition-based problem as the master problem, which may help reduce the
number of iterations in the master problem, particularly when merging is performed
to keep the master problem small. Finally, there may be opportunities to combine the
partition-based approach with ideas used in recent work on inexact bundle methods
with on-demand accuracy [15, 25, 24, 37], which allow a close coordination between
the computational efforts of optimization and distribution approximation.

The solution framework can be extended to cases where the first stage feasible set
X is convex but not necessarily polyhedral. In particular, we expect the small parti-
tion property for two-stage stochastic programs with simple recourse to hold for such
problems under mild technical assumptions. The adaptive partition-based framework
also extends to stochastic integer programs with integer variables only in the first
stage. Although its performance is under further study, a limitation of the adaptive
partition-based approach is that aggregating coefficients may destroy structure that
appears in the scenario-based formulation. For example, in a set packing problem,
the constraint coefficients are all 0’s and 1’s. MIP solvers can take advantage of this
structure and improve the problem formulation by generating valid inequalities that
improve the LP relaxation. When this structure is destroyed in the partition-based
master problem, the partition-based master problem may be much harder to solve
than the scenario-based problems, despite being more compact.

Appendix. An example that shows the bound in Proposition 3.1 is
tight. We provide an example that shows that the bound n1 −m1 +m2 + 1 is tight
for the case m2 = 1 and m1 = 0, in which case the bound becomes n1 + 2. We let
N = {1, . . . , n1 + 2} and show that the only completely sufficient partition is the
trivial one that has all n1 +2 scenarios in different components, matching the bound.
Consider the problem

min

n1∑
k=1

ckxk +

n1+2∑
k=1

yk

s.t. xk + yk ≥ 1 ∀k = 1, 2, . . . , n1,(A.1)

yn1+1 ≥ 1,(A.2)

yn1+2 ≥ −1,(A.3)

xk ≥ 0 ∀k = 1, 2, . . . , n1, yk ≥ 0, ∀k = 1, 2, . . . , n1 + 2,

where we assume that 0 < c1 < c2 < · · · < cn1 < 1. The optimal solution has
x∗ = e, y∗k = 0 for k ∈ N \ {n1 + 1}, and y∗n1+1 = 1 with optimal objective value
z∗ =

∑n1

k=1 ck+1. Let 1 ≤ i < j ≤ n1+2 be any two scenarios and P = {i, j}. Define
the partition NP = {P, {k}k∈N\P}, which has size n1 + 1. We show that any such
partition yields zNP < z∗ and hence is not completely sufficient. Any other partition
N ′ would have NP as a refinement of N ′ for some P , and so this establishes that
the only completely sufficient partition is N = {{k}k∈N}. We consider all possible
cases for P = {i, j}. First, suppose i = n1 + 1 and j = n1 + 2. Then the partition
problem replaces (A.2) and (A.3) with yP ≥ 0 and replaces the terms yn1+1 + yn1+2

in the objective with yP . The optimal solution has x̂ = e, ŷk = 0 ∀k = 1, 2, . . . , n1,
and ŷP = 0 yielding zP =

∑n1

k=1 ck < z∗. Now suppose j = n1 + 2 and i ≤ n1.
Then the partition problem replaces constraint i of (A.1) and constraint (A.3) with
xi + yP ≥ 0. The optimal solution then has x̂i = 0, x̂k = 1 for k 	= i, ŷP = 0,

1366 YONGJIA SONG AND JAMES LUEDTKE

ŷn1+1 = 1, and ŷk = 0 ∀k 	= i for an objective value of
∑

k �=i ck + 1 < z∗. Next,
suppose j = n1 + 1 and i ≤ n1. Then constraint i of (A.1) and constraint (A.2) are
replaced with xi + yP ≥ 2. The optimal solution then has x̂i = 2, x̂k = 1 for k 	= i,
ŷP = 0, and ŷk = 0 ∀k 	= i, yielding objective value

∑n1

k=1 ck + ci < z∗. Finally,
suppose 1 ≤ i < j ≤ n1. Then constraints i and j in (A.1) are replaced with the
constraint xi + xj + yP ≥ 2. Because ci < cj , the optimal solution is then x̂i = 2,
x̂j = 0, x̂k = 1 ∀k 	= i, j, ŷP = 0, ŷn1+1 = 1, and ŷk = 0 ∀k 	= i, j with objective value∑n1

k=1 ck − (cj − ci) + 1 < z∗, since cj > ci.

Acknowledgment. We greatly appreciate the comments and suggestions of the
editors and two anonymous referees.

REFERENCES

[1] K.A. Ariyawansa and A.J. Felt, On a new collection of stochastic linear programming test
problems, INFORMS J. Comput., 16 (2004), pp. 291–299.

[2] J.C. Bean, J. Birge, and R.L. Smith, Aggregation in dynamic programming, Oper. Res., 35
(1987), pp. 215–220.

[3] J.E. Beasley, OR-library: Distributing test problems by electronic mail, J. Oper. Res. Soc.,
41 (1990), pp. 1069–1072.

[4] P. Beraldi and A. Ruszczyński, A branch and bound method for stochastic integer programs
under probabilistic constraints, Optim. Methods Softw., 17 (2002), pp. 359–382.

[5] D. Bienstock and M. Zuckerberg, Solving LP relaxations of large-scale precedence con-
strained problems, in Integer Programming and Combinatorial Optimization, Lecture Notes
in Comput. Sci. 6080, 2010, pp. 1–14.

[6] J. Birge, Aggregation bounds in stochastic linear programming, Math. Program., 31 (1985),
pp. 25–41.

[7] J.R. Birge and F.V. Louveaux, Introduction to Stochastic Programming, 2nd ed., Springer,
New York, 2011.

[8] J. Birge and R. Wets, Designing approximation schemes for stochastic optimization prob-
lems, in particular for stochastic programs with recourse, Math. Program. Study, 27 (1986),
pp. 54–102.

[9] M.S. Casey and S. Sen, The scenario generation algorithm for multistage stochastic linear
programming, Math. Oper. Res., 30 (2005), pp. 615–631.

[10] K.J. Cormican, D.P. Morton, and R.K. Wood, Stochastic network interdiction, Oper. Res.,
46 (1998), pp. 184–197.

[11] B. Denton and D. Gupta, A sequential bounding approach for optimal appointment schedul-
ing, IIE Trans., 35 (2003), pp. 1003–1016.

[12] N.C.P. Edirisinghe and W.T. Ziemba, Tight bounds for stochastic convex programs,
Oper. Res., 40 (1992), pp. 660–677.

[13] D. Espinoza and E. Moreno, A primal-dual aggregation algorithm for minimizing conditional-
value-at-risk in linear programs, Comput. Optim. Appl., 59 (2014), pp. 617–638.

[14] C. Fábián and Z. Szöke, Solving two-stage stochastic programming problems with level de-
composition, Comput. Manage. Sci., 4 (2007), pp. 313–353.

[15] C. Fábián, C. Wolf, A. Koberstein, and L. Suhl, Risk-averse optimization in two-stage
stochastic models: Computational aspects and a study, SIAM J. Optim., 25 (2015), pp. 28–
52.

[16] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org, 2010.
[17] A. Hallefjord and S. Storoy, Aggregation and disaggregation in integer programming prob-

lems, Oper. Res., 38 (1990), pp. 619–623.
[18] D.B. Hausch and W.T. Ziemba, Bounds on the value of information in uncertain decision

problems: Two, Stochastics, 10 (1983), pp. 181–217.
[19] C.C. Huang, W.T. Ziemba, and A. Ben-Tal, Bounds on the expectation of a convex function

of a random variable, Oper. Res., 25 (1977), pp. 315–325.
[20] K. Jornsten, R. Leisten, and S. Storoy, Convergence aspects of adaptive clustering in

variable aggregation, Comput. Oper. Res., 26 (1999), pp. 955–966.
[21] P. Kall and J. Mayer, Stochastic Linear Programming: Models, Theory and Computation,

Springer, New York, 2011.
[22] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, New variants of bundle methods,

Math. Program., 69 (1995), pp. 111–147.

http://eigen.tuxfamily.org

PARTITION-BASED APPROACH FOR STOCHASTIC PROGRAMS 1367

[23] J. Linderoth, A. Shapiro, and S. Wright, The empirical behavior of sampling methods for
stochastic programming, Ann. Oper. Res., 142 (2006), pp. 215–241.

[24] W. Oliveira, C. Sagastizábal, and S. Scheimberg, Inexact bundle methods for two-stage
stochastic programming, SIAM J. Optim., 21 (2011), pp. 517–544.

[25] W. Oliveira and C. Sagastizábal, Level bundle methods for oracles with on-demand accu-
racy, Optim. Methods Softw., 29 (2014), pp. 1180–1209.

[26] P. Pierre-Louis, G. Bayraksan, and D.P. Morton, A combined deterministic and sampling-
based sequential bounding method for stochastic programming, in Proceedings of the Winter
Simulation Conference, S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu,
eds., 2011, pp. 4172–4183.

[27] F. Qiu, S. Ahmed, S.S. Dey, and L.A. Wolsey, Covering linear programming with violations,
INFORMS J. Comput., 26 (2014), pp. 531–546.

[28] D.F. Rogers, R.D. Plante, R.T. Wong, and J.R. Evans, Aggregation and disaggregation
techniques and methodology in optimization, Oper. Res., 39 (1991), pp. 553–582.

[29] C.H. Rosa and S. Takriti, Improving aggregation bounds for two-stage stochastic programs,
Oper. Res. Lett., 24 (1999), pp. 127–137.

[30] A. Ruszczyński, A regularized decomposition method for minimizing a sum of polyhedral func-
tions, Math. Program., 35 (1986), pp. 309–333.

[31] A. Ruszczyński and A. Świȩtanowski, Accelerating the regularized decomposition method for
two stage stochastic linear problems, European J. Oper. Res., 101 (1997), pp. 328–342.

[32] B. Sandikçi, N. Kong, and A.J. Schaefer, A hierarchy of bounds for stochastic mixed-integer
programs, Math. Program., 138 (2013), pp. 253–272.

[33] Y. Song, Structure-exploiting Algorithms for Chance-constrained and Integer Stochastic Pro-
grams, Ph.D. thesis, University of Wisconsin-Madison, Madison, WI, 2013.

[34] Y. Song, J. Luedtke, and S. Küçükyavuz, Chance-constrained binary packing problems,
INFORMS J. Comput., 26 (2014), pp. 735–747.

[35] S. Trukhanov, L. Ntaimo, and A. Schaefer, Adaptive multicut aggregation for two-stage
stochastic linear programs with recourse, European J. Oper. Res., 206 (2010), pp. 395–406.

[36] R. Van Slyke and R.J.-B. Wets, L-shaped linear programs with applications to optimal control
and stochastic programming, SIAM J. Appl. Math., 17 (1969), pp. 638–663.

[37] C. Wolf, C.I. Fábián, A. Koberstein, and L. Suhl, Applying oracles of on-demand accuracy
in two-stage stochastic programming—a computational study, European J. Oper. Res., 239
(2014), pp. 437–448.

[38] C. Wolf and A. Koberstein, Dynamic sequencing and cut consolidation for the parallel
hybrid-cut nested l-shaped method, European J. Oper. Res., 230 (2013), pp. 143–156.

[39] S.E. Wright, Primal-dual aggregation and disaggregation for stochastic linear programs,
Math. Oper. Res., 19 (1994), pp. 893–908.

[40] P.H. Zipkin, Bounds for row-aggregation in linear programming, Oper. Res., 28 (1980),
pp. 903–916.

[41] P.H. Zipkin, Bounds on the effect of aggregating variables in linear programming, Oper. Res.,
28 (1980), pp. 403–418.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

