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Abstract We study valid inequalities for optimizationmodels that contain both binary
indicator variables and separable concave constraints. Thesemodels reduce to amixed-
integer linear program (MILP) when the concave constraints are ignored, or to a
nonconvex global optimization problem when the binary restrictions are ignored. In
algorithms designed to solve these problems to global optimality, cutting planes to
strengthen the relaxation are traditionally obtained using valid inequalities for the
MILP only. We propose a technique to obtain valid inequalities that are based on
both the MILP constraints and the concave constraints. We begin by characterizing
the convex hull of a four-dimensional set consisting of a single binary indicator vari-
able, a single concave constraint, and two linear inequalities. Using this analysis, we
demonstrate how valid inequalities for the single node flow set and for the lot-sizing
polyhedron can be “tilted” to give valid inequalities that also account for separable
concave functions of the arc flows. We present computational results demonstrating
the utility of the new inequalities for nonlinear transportation problems and for lot-
sizing problems with concave costs. To our knowledge, this is one of the first works
that simultaneously convexifies both nonconvex functions and binary variables to
strengthen the relaxations of practical mixed-integer nonlinear programs.
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1 Introduction

Cutting planes are a crucial ingredient in modern solvers for mixed-integer linear
programs (MILP). The cutting planes are typically derived through a mathematical
analysis of structured sets that are relaxations of the feasible region of MILP. In recent
years, there has been significant research effort applying the same paradigm to mixed-
integer nonlinear programs (MINLP), whose feasible region is defined by constraint
functions that are nonlinear.Most of thework inMINLPhas been on the analysis of sets
where the nonlinear functions are convex (see, e.g., [4,6] and references therein). There
is relatively less research studying the structure of specific mixed-integer nonlinear
sets where the nonlinear functions are nonconvex [17,23]. Our work adds to the body
of knowledge on structured, mixed-integer nonlinear sets whose constraint functions
are not convex.

We study a mixed-integer nonlinear set composed of a base polyhedron P ⊆ R
n ,

a variable bound set composed of a collection of indicator variables

Z := {(x, z) ∈ R
n × B

n : �i zi ≤ xi ≤ ui zi for i ∈ [n]},

and the component-wise epigraphs of n univariate concave functions { f1, . . . , fn},
fi : R → R,

T := {(x, t) ∈ R
2n : ti ≥ fi (xi ), 0 ≤ xi ≤ ui for i ∈ [n]}.

By studying an analogous low-dimensional set, we give a methodology for producing
valid inequalities for the set

X := {(x, z, t) ∈ R
n × B

n × R
n : x ∈ P, (x, z) ∈ Z, (x, t) ∈ T } (1)

for relatively general variants of the base polytope P .
Throughout the paper, we use the standard notation [n] = {1, 2, . . . , n}. For each

i ∈ [n],we assumewithout loss of generality that fi (0) = 0, �i < ui , and for simplicity
of presentation we assume that �i ≥ 0. We frequently abuse notation and perform set
intersection between sets with different domains. ForA ⊆ {(a, b) ∈ A× B} and B ⊆
{(b, c) ∈ B×C}, we letA∩B := {(a, b, c) ∈ A×B×C : (a, b) ∈ A and (b, c) ∈ B}.
With this abuse of notation, we can say that X = P ∩ Z ∩ T . Using the facts that
conv(P ∩ Z) is a polyhedron, and T is the Cartesian product of the epigraphs of
univariate concave functions, it is easy to establish that conv(X ) is a polyhedron. See
e.g., Theorem I.1 in [16].

Relaxations of the set X appear as substructures in many important optimization
problems. For example, in Sect. 4, we focus on the case where P is a single flow
constraint, PSNFS := {

x ∈ R
n+ : ∑

i∈N+ xi −∑
i∈N− xi ≤ d

}
, so that the set PSNFS∩

Z is the well-studied single node flow set, which arises naturally in many important
practical applications and forwhichmanyclasses of strongvalid inequalities are known
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Separable concave constraints with indicator variables

[11,22]. When P is the network-flow polytope, the set P ∩ T is the feasible region of
the minimum concave-cost network flow problem (MCNFP) [13]. The MCNFP arises
in many application areas, including communication network design, facility location,
and VLSI design, where the concave functions typically model economies of scale. In
lot-sizing problems, P is a network-flow polytope, and the set P ∩Z is used to model
a production plan that has both fixed and variable cost components. In Sect. 5, we
demonstrate how to apply our analysis to derive new classes of valid inequalities for
lot-sizing problems that have a concave variable-cost structure, so thatX = P∩Z∩T
is the relevant mathematical structure to study.

The setX also occurs as a relaxationof formulations of engineeringdesignproblems
that involve a non-linear relationship between input and output variables. For example,
in water-network design problems, the potential loss ta across an arc a ∈ A in the pipe
network can be modeled as a nonlinear function of the water flow xa , ta = fa(xa) :=
αa sign(xa)x2a [8]. Similar nonlinear, non-convex relationships exist in modeling the
pressure loss along pipes in a gas network [19,25] or to model the efficiency of hydro-
electric power generation [7]. In each of these cases, the set T is used to model the
nonlinearity, the base polytope P captures important physical properties such as flow
balance, and the indicator structure in the set Z may be used to model discrete pipe
sizes, the uni-directionality of flows, or discrete start-up-behavior of components of
the engineered system under study. In this case, even though the nonlinear functions
are not necessarily concave, to build a valid relaxation, algorithms must generate
relaxations for both the convex and concave parts of the function [9,20,24]. Thus,
valid inequalities for the set X could be an important building block in algorithms for
solving engineering design problems.

The paper has six subsequent sections. In Sect. 2, we show that conv(Z ∩ T ) is a
simple polyhedral set consisting of a strengthened version of secant inequalities from
T . Thus, we argue that in order to get stronger relaxations of X , we must simultane-
ously consider each of the sets whose intersection forms X = P ∩Z ∩ T . In Sect. 3,
we build a simple, low-dimensional set derived from valid inequalities for P ∩ Z ,
and we describe how to use this set to construct a valid inequality for X . In Sect. 4,
we demonstrate how to apply the methodology from Sect. 3 when the set P ∩ Z is
the single node flow set. We derive a new class of strong valid inequalities called
Tilted Simple Generalized Flow Cover Inequalities (TSGFCI) for X . In Sect. 5, we
study the lot sizing problem where economies of scale are modeled with concave vari-
able costs. Extensions of known inequalities from lot sizing, which we call the tilted
(�, S) inequalities (TLSI), are derived. Section 6 contains two computational studies
demonstrating how using both the TSGFCI and TLSI inequalities can lead to signif-
icant speedups to state-of-the-art global optimization software. We make concluding
remarks in Sect. 7.

A preliminary version of this work appeared as the extended abstract [18]. The
important extensions made in the current paper include the following.

– We generalized the low-dimensional set studied in Sect. 3, which allowed us to
strengthen an earlier result on TSGFCI to include both incoming and outgoing
arcs from the single node flow set.
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– Section 5, showing the application of our methodology on lot-sizing problems is
completely new, as is the corresponding computational study in Sect. 6.2.

– Theproofs of all technical results,whichwere excludeddue to space considerations
in [18] are included in this work.

– The exposition has been improved by adding more examples.

2 Motivation: the set Z ∩ T

The standard methodology used to solve optimization problems involving non-convex
structures such as X to global optimality is to create a convex relaxation of X and
then to refine the relaxation over the feasible region via a branch-and-bound approach.
The most natural way to create a convex relaxation of X , employed by state-of-the-
art software such as BARON [24], ANTIGONE [20], and SCIP [5], is to relax the
integrality requirements on binary variables in Z ,

R(Z) := {(x, z) ∈ R
n × [0, 1]n : �i zi ≤ xi ≤ ui zi for i ∈ [n]},

and to underestimate the concave functions fi (·) using the secant intersecting the
graph of the function at the endpoints of its domain,

S(T ) :=
{
(x, t) ∈ R

2n : ti ≥ fi (�i ) + fi (ui ) − fi (�i )

ui − �i
(xi − �i ) for i ∈ [n]

}
.

The polyhedron R(X ) := P ∩ R(Z) ∩ S(T ) is a relaxation that can be employed
within a branch-and-bound approach to optimize over X .

The constraints in the setZ enforce the logical conditions that if the binary variable
zi = 0, then the associated variable xi = 0 as well. Using this fact, one can strengthen
the relaxation R(X ) using the set of strengthened secant inequalities

S̄(T ,Z) :=
{
(x, z, t) ∈ R

3n : ti ≥ fi (�i )zi + fi (ui ) − fi (�i )

ui − �i
(xi −�i zi ) for i ∈ [n]

}
.

The set S̄(T ,Z) forms the basis of the strongest possible convex relaxation of the
X when the constraints in P are ignored.

Proposition 1 conv(Z ∩ T ) = R(Z) ∩ S̄(T ,Z).

Proof Since the triples of variables (x j , z j , t j ) are all independent inZ∩T , it suffices
to prove the result for the case n = 1. We let Z and T denote the n = 1 instances
of the sets Z and T , respectively. For a set S that has a single binary variable, let S j

denote the set with the binary variable fixed to j ∈ {0, 1}. Using this disjunction, we
have that

conv(Z ∩ T ) = conv
(
(Z ∩ conv(T ))0 ∪ (Z ∩ conv(T ))1

)
.
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Separable concave constraints with indicator variables

The fact that

conv
(
(Z ∩ conv(T ))0 ∪ (Z ∩ conv(T ))1

)
= R(Z) ∩ S̄(Z , T )

can be established using standard results on the convex hull of the union of polyhedra
[2]. 	


Proposition 1 implies that the strengthened secant inequalities yield the strongest
relaxation we can obtain of X if we ignore the interaction between P and Z ∩ T .
Thus, we next investigate a methodology that can simultaneously consider portions of
all components of the structure of P ∩ Z ∩ T .

3 A low-dimensional mixed-integer nonlinear set

Our goal is to derive valid inequalities for the set P ∩ Z ∩ T from valid inequalities
for the setP ∩Z . To that end, we define the following low-dimensional mixed-integer
linear sets

S≥ :=
{
(s, x, z) ∈ R

2 × B : s + ai x + bi z ≥ γ, i = 1, 2, �z ≤ x ≤ uz
}

and

S≤ :=
{
(s, x, z) ∈ R

2 × B : s + ai x + bi z ≤ γ, i = 1, 2, �z ≤ x ≤ uz
}

.

We assume that the two linear inequalities in the definitions of S≥ and S≤ intersect in
the z = 1 plane at a point whose x coordinate ism, where � < m < u. Thus, we make
the assumption that the coefficients ai , bi , i = 1, 2, satisfy

� < m := b2 − b1
a1 − a2

< u. (2)

This assumption implies that a1� + b1 < a2� + b2.
Let f : R → R be a concave function with f (0) = 0. We assume that

f (m) > f (�) +
(

f (u) − f (�)

u − �

)
(m − �) (3)

since otherwise f is affine in the range [�, u]. We are interested in studying valid
inequalities for the following mixed-integer nonlinear sets:

ST≥ := {(s, x, z, t) ∈ R
2 × B × R : (s, x, z) ∈ S≥, t ≥ f (x)}

ST≤ := {(s, x, z, t) ∈ R
2 × B × R : (s, x, z) ∈ S≤, t ≥ f (x)}.

The analysis of the sets ST≥ and ST≤ is nearly identical, so we focus our analysis on
ST≥ and then just present the main results for ST≤.
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Fig. 1 Visualizing the set ST 1≥. a The projection of ST 1≥ onto (s, x). b A slice of the set ST 1≥ for a fixed

value of s, along with the secant inequality. c Slices of the set ST 1≥ along four s values. The three extreme
points are circled

We begin by analyzing the extreme points of conv(ST≥). All extreme points of
conv(ST≥) have z = 0 or z = 1, so we first consider the set that is obtained when
z = 1,

ST 1≥ :=
{
(s, x, t) ∈ R

3 : s + ai x ≥ γ − bi , i = 1, 2, � ≤ x ≤ u, t ≥ f (x)
}

.

Figure 1 helps visualize the set ST 1≥. It follows from concavity of f that the extreme
points of conv(ST 1≥) are the points

(γ − (a1� + b1), �, f (�)),

(γ − (a2m + b2),m, f (m)), and

(γ − (a2u + b2), u, f (u)).

(The s component of the second extreme point is also equal to γ − (a1m + b1).)
The hyperplane defined by these three points defines a valid inequality for the set
conv(ST 1≥).

This discussion is formalized and extended to the set ST≥ in the following propo-
sition.

Proposition 2 The extreme rays of conv(ST≥) are given by (1, 0, 0, 0) and (0, 0, 0, 1),
and the extreme points of conv(ST≥) are given by the points:

v1 = ( γ, 0, 0, 0),
v2 = ( γ − (a1� + b1), �, 1, f (�)),
v3 = ( γ − (a2m + b2), m, 1, f (m)),

v4 = ( γ − (a2u + b2), u, 1, f (u)).

Proof It is necessary to analyze the extreme rays and extreme points in the cases
z = 0 and z = 1. It is easily seen that (1, 0, 0, 0) and (0, 0, 0, 1) are the extreme
rays of conv(ST≥) in both cases. When z = 0, the set reduces to the constraints
s ≥ γ, x = 0, t ≥ 0. The sole extreme point of this set is v1. When z = 1, the set
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reduces to the set ST 1≥. If an arbitrary linear function λss + λx x + λt t is minimized
over this set, then the problem is unbounded if λt < 0; otherwise, there is an optimal
solutionwith t = f (x). Thus, the problem reduces tominimizing the concave function
λss + λx x + λt f (x) over the set

projs,x (ST
1≥) := {(s, x) : s + ai x ≥ γ − bi , i = 1, 2, � ≤ x ≤ u}.

Extreme points v2, v3, and v4 then follow since there always exists an optimal solution
of this concave minimization problem at an extreme point of projs,x (ST

1≥). 	

By polarity, (see e.g. Theorem 5.2 of [21]), we obtain the following characterization

of valid inequalities for ST≥.

Corollary 1 An inequality

λss + λx x + λz z + λt t ≥ λ0 (4)

is valid for conv(ST≥) if and only if (λs, λx , λz, λt , λ0) ∈ C≥, where C≥ is the
polyhedral cone

C≥ := {λ ∈ R
5 : λs ≥ 0, λt ≥ 0, vk λ̃ ≥ λ0, k = 1, . . . , 4},

where λ̃ := (λs, λx , λz, λt ) and vk are defined in Proposition 2.
Furthermore, (4) is a facet-defining inequality for conv(ST≥) if and only if λ is an

extreme ray of C≥.

We are interested in valid inequalities for ST≥ that have λt > 0 and λs > 0. Under
this condition, the characterization of valid inequalities for ST≥ in Corollary 1 reduces
to a system of four inequalities, one for each of the points vk, k = 1, 2, 3, 4, in five
unknowns. Thus, the only extreme ray of that system must satisfy all four inequalities
as an equality. Adding the normalization condition that λs = 1 and then observing
that v1λ = λ0 implies that λ0 = γ λs = γ , we obtain the following reduced system
of equations:

⎛

⎝
� 1 f (�)
m 1 f (m)

u 1 f (u)

⎞

⎠

⎛

⎝
λx

λz

λt

⎞

⎠ =
⎛

⎝
a1� + b1
a2m + b2
a2u + b2

⎞

⎠ . (5)

The assumption (3) together with � < m < u implies that the system (5) has a
unique solution, which we denote by (λ̄x , λ̄z, λ̄t ). We thus obtain the following valid
inequality.

Theorem 1 Let (λ̄x , λ̄z, λ̄t ) be the solution to (5). The inequality

s + λ̄x x + λ̄z z + λ̄t t ≥ γ (6)

is a valid and facet-defining inequality for conv(ST≥).
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Proof It remains to prove that λ̄t > 0. Consider the function g(x) := λ̄x x + λ̄z +
λ̄t f (x). Note that as f is concave and satisfies (3), g(x) is either concave or convex
depending on the sign of λ̄t , and is affine if and only if λ̄t = 0. We can rewrite (5) as
the three equalities g(�) = a1� + b1, g(m) = a2m + b2, and g(u) = a2u + b2. Let
δ := (u − m)/(u − �) and observe that

δg(�) + (1 − δ)g(u) < δ(a2� + b2) + (1 − δ)(a2u + b2) = a2m + b2 = g(m)

where the first inequality follows from the assumption a1� + b1 < a2� + b2 and the
second equation follows because δ� + (1− δ)u = m. It follows that g is concave and
is not affine, and hence λ̄t > 0. 	


The facet-defining inequalities for conv(ST≥) that have λs = 0 are character-
ized in Proposition 1. The facet-defining inequalities for ST≥ that have λt = 0 are
those that define conv(S≥). Combining these valid inequalities with the sole facet-
defining inequality for conv(ST≥) from Theorem 1 yields a complete characterization
of conv(ST≥).

Theorem 2 conv(ST≥) is described by the set of (s, x, z, t) for which (s, x, z) ∈
conv(S≥), and which satisfy (6) and the strengthened secant inequality

t ≥ f (�)z +
(

f (u) − f (�)

u − �

)
(x − �z). (7)

Nearly identical arguments yield the following analogous result for convST≤.

Theorem 3 Let (λ̄x , λ̄z, λ̄t ) be the unique solution to the system of equations

⎛

⎝
� 1 f (�)
m 1 f (m)

u 1 f (u)

⎞

⎠

⎛

⎝
λx

λz

λt

⎞

⎠ =
⎛

⎝
a2� + b2
a2m + b2
a1u + b1

⎞

⎠ . (8)

Then, the inequality

s + λ̄x x + λ̄z z + λ̄t t ≤ γ (9)

is valid and facet-defining for convST≤, and convST≤ is described by the set of
(s, x, z, t) with (s, x, z) ∈ conv(S≤) that satisfy (7) and (9).

Example: Let f (x) = −x2 and consider the set

Ŝ≤ :=
{
(s, x, z) ∈ R

2 × B : s + x − 7z ≤ 1, s ≤ 1, 0 ≤ x ≤ 8z
}

.

The linear system (8) is

⎛

⎝
0 1 0
7 1 −49
8 1 −64

⎞

⎠

⎛

⎝
λx

λz

λt

⎞

⎠ =
⎛

⎝
0
0
1

⎞

⎠
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and has the solution (λx , λz, λt ) = (− 7
8 , 0,− 1

8 ), so Theorem 3 states that the inequal-
ity

s − 1

8
(t + 7x) ≤ 1

is valid and facet-defining for conv(Ŝ≤ ∩ {(x, t) : t ≥ f (x)}).

4 Application to single node flow set

The Single Node Flow Set XSNFS is

XSNFS :=
{
(x, z) ∈ R

n × B
n :

∑

i∈N+
xi −

∑

i∈N−
xi ≤ d,

0 ≤ xi ≤ ui zi for i ∈ N
}
. (10)

N+ and N− denote the set of indices corresponding to the inflow and outflow arcs
respectively, N = N+ ∪ N−, and n = |N |.

We now define a variant of the Single Node Flow Set that incorporates concave
functions of the flow variables. The Concave Single Node Flow Set is

XCSNFS
f :=

{
(x, z, t) ∈ R

n × B
n × R

n : (x, z) ∈ XSNFS, ti ≥ fi (xi ) for i ∈ N
}

where fi : R → R are concave functions with fi (0) = 0.

4.1 Valid inequalities for XCSNFS
f

Valid and facet-defining inequalities for conv(XSNFS) are still valid and facet-defining
for conv(XCSNFS

f ). We can use the theory developed in Sect. 3 to derive additional
valid inequalities for XCSNFS

f based on valid inequalities for XSNFS. More precisely,
whenever we have two valid inequalities for XCSNFS

f (or XSNFS) that can be written
as s + a1xk + b1zk ≤ γ and s + a2xk + b2zk ≤ γ where

s =
∑

i∈N\{k}
(π x

i xi + π z
i zi + π t

i ti ), (11)

we can directly apply Theorem 3 to obtain a new valid inequality of XCSNFS
f .

We begin by assuming we have a valid inequality of the form

∑

i∈M+\F
(αi xi + βi zi ) +

∑

i∈F
(λx

i xi + λz
i zi + λti ti ) +

∑

i∈N\M+
(π x

i xi + π z
i zi ) ≤ γ

(12)

where F ⊂ M+ ⊆ N+, and for all i ∈ M+\F we have αi > 0 and βi < 0.
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To apply Theorem 3, we choose k ∈ M+\F , and write the inequality (12) as

s + αk xk + βk zk ≤ γ

where

s =
∑

i∈M+\(F∪{k})
(αi xi + βi zi )

+
∑

i∈F
(λx

i xi + λz
i zi + λti ti ) +

∑

i∈N\M+
(π x

i xi + π z
i zi ). (13)

We now establish that s ≤ γ is also a valid inequality.

Lemma 1 Assume (12) is a valid inequality for XCSNFS
f . Then s ≤ γ is also a valid

inequality for XCSNFS
f .

Proof Let (x, z, t) ∈ XCSNFS
f , and s be as defined in (13). Define the vector (x ′, z′, t ′)

by (x ′
i , z

′
i , t

′
i ) = (xi , zi , ti ) for i 
= k, and (x ′

k, z
′
k, t

′
k) = (0, 0, 0). Since

∑
i∈N+ x ′

i −∑
i∈N− x ′

i ≤ ∑
i∈N+ xi−∑

i∈N− xi , it follows from (x, z) ∈ XSNFS that also (x ′, z′) ∈
XSNFS, and thus also (x ′, z′, t ′) ∈ XCSNFS

f , since fk(0) = 0. But, since k ∈ M+\F ,
s as defined in (13) does not depend on tk , zk or xk . Thus, substituting (x ′, z′, t ′) into
(13) to obtain s′ yields s′ = s. Finally, as (x ′, z′, t ′) ∈ XCSNFS

f and (12) is valid for
XCSNFS

f , it holds that s = s′ + αk x ′
k + βk z′k ≤ γ . 	


Now, we assume we know the following inequality is valid for XSNFS:

∑

i∈M+
(αi xi + βi zi ) +

∑

i∈N\M+
(π x

i xi + π z
i zi ) ≤ γ. (14)

By repeatedly applying Theorem 3 and Lemma 1, we derive a family of valid inequal-
ities for XCSNFS

f .

Theorem 4 Assume (14) is a valid inequality for XSNFS with αi > 0, βi < 0, and
αi ui + βi > 0 for i ∈ M+ ⊆ N+. Let F ⊆ M+, and for i ∈ F let (λ̄x

i , λ̄
z
i , λ̄

t
i ) be the

solution to (8) with (a1, b1, a2, b2, �, u) = (αi , βi , 0, 0, 0, ui ). Then, the following
tilted inequality is valid for XCSNFS

f :

∑

i∈M+\F
(αi xi + βi zi ) +

∑

i∈F
(λ̄x

i xi + λ̄ti ti ) +
∑

i∈N\M+
(π x

i xi + π z
i zi ) ≤ γ. (15)

Proof Starting with (14) we choose k ∈ M+ and apply Lemma 1 and Theorem 3
to obtain a valid inequality of the form (15) in which F = {k}. Note that since a2
and b2 are zero, the corresponding λ̄z is also zero. Proceeding inductively, given any
inequality of the form (15), we can again choose k′ ∈ M+\F and apply the same
procedure, as long as F ⊂ M+. 	
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Since each inequality (15) is derived from a single base inequality (14), we refer to
the process of deriving this inequalities as tilting.

Given a solution (x̂, ẑ, t̂) to the relaxation and a “base” valid inequality (14), the
most violated tilted inequality (15) is obtained by setting

F∗ := {
i ∈ M+ : αi x̂i + βi ẑi < λ̄x

i x̂i + λ̄ti t̂i
}
. (16)

We leave it as an open question to determine general conditions under which the
tilting procedure yields facet-defining inequalities. However, in the next section we
provide such conditions when the base inequality comes from a particular class of
valid inequalities for XSNFS.

4.2 Tilting flow cover inequalities

An important class of valid inequalities for the XSNFS, are known as flowcover inequal-
ities (FCI).

A generalized flow cover is defined by sets (C+,C−), whereC+ ⊆ N+,C− ⊆ N−
and

∑
i∈C+ ui − ∑

i∈C− ui = d + μ,μ > 0.
There are many variants of flow cover inequalities, including FCI with inflows-only

[22], simple generalized and extended generalized FCI [21,26], and lifted versions of
FCI and simple generalized FCI [11,12]. As an illustration of our results, we focus on
the Simple Generalized Flow Cover Inequality (SGFCI), which can be written as

∑

i∈C+

(
xi − (ui − μ)+zi

) −
∑

i∈L−
min(ui , μ)zi −

∑

i∈N−\(C−∪L−)

xi ≤ d(C+,C−)

(17)

where (C+,C−) is a generalized flow cover, L− ⊆ N−\C−, and d(C+,C−) :=
d + ∑

i∈C− ui − ∑
i∈C+(ui − μ)+. Van Roy and Wolsey [26] provide sufficient

conditions for the SGFCI to be facet-defining.

Tilting based on Theorem 4. If we let M+ = {i ∈ C+ : ui > μ}, then the SGFCI
takes the form of (14) with γ = d(C+,C−). Choose F ⊆ M+, and for i ∈ F , let
(λ̄x

i , 0, λ̄
t
i ) be the solution to (8) with (a1, b1, a2, b2, �, u) = (1, μ − ui , 0, 0, 0, ui ).

Then, applying Theorem 4 we obtain that the inequality

∑

i∈C+\F

(
xi − (ui − μ)+zi

) −
∑

i∈L−
min(ui , μ)zi −

∑

i∈N−\(C−∪L−)

xi +
∑

i∈F

(
λ̄x
i xi + λ̄ti ti

) ≤ d(C+,C−)

(18)

is valid for XCSNFS
f .

We next provide sufficient conditions for which inequality (18) is facet-defining for
XCSNFS

f , which generalizes Theorem 6 of [26]. The proof of the result is given in the
Appendix.
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Theorem 5 Assume (i) d > 0, (ii) maxi∈C+ ui > μ, (iii) ui > μ for i ∈ L−, (iv)
C− = ∅, (v) ui > μ for all i ∈ F, and (vi)

∑
i∈C+\F ui > μ. Then (18) is facet-

defining for XCSNFS
f .

Assumptions (i)–(iv) are from [26]. Assumption (v) is the requirement for (18) to
be a valid inequality, and assumption (vi) is a new facet-defining condition when F is
nonempty.

Tilting based on different L− choices. Theorem 4 only applies to indices in the inflow.
We can leverage the particular structure of SGFCI and apply a different tilting process
to certain indices in the outflow.

Theorem 6 Let F ⊆ M+ and G ⊆ {i ∈ L− : μ < ui }. For i ∈ F, let (λ̄x
i , 0, λ̄

t
i ) be

the solution to (8) with (a1, b1, a2, b2, �, u) = (1, μ − ui , 0, 0, 0, ui ) and for i ∈ G,
let (λ̄x

i , 0, λ̄
t
i ) be the solution to (8) with (a1, b1, a2, b2, �, u) = (0,−μ,−1, 0, 0, ui ).

Then, the Tilted Simple Generalized Flow Cover Inequality (TSGFCI):
∑

i∈C+\F

(
xi − (ui − μ)+zi

) −
∑

i∈L−\G
min(ui , μ)zi −

∑

i∈N−\(C−∪L−)

xi +
∑

i∈F∪G

(
λ̄x
i xi + λ̄ti ti

) ≤ d(C+,C−)

(19)

is valid for XCSNFS
f .

Proof The proof is by induction on the size of G. When G = ∅, (19) reduces to (18),
which is valid by Theorem 4. Thus, assume for induction that (19) is valid for any
L− ⊆ N−\C−, F ⊆ M+, G ⊆ {i ∈ L− : μ < ui } with |G| ≤ c, where c ≥ 0.
Consider now an L̄− ⊆ N−\C−, F̄ ⊆ M+, Ḡ ⊆ {i ∈ L− : μ < ui }with |Ḡ| = c+1.
Choose k ∈ Ḡ and let

s =
∑

i∈C+\F

(
xi − (ui − μ)+zi

) −
∑

i∈L̄−\Ḡ
min(ui , μ)zi −

∑

i∈N−\(C−∪L̄−)

xi

+
∑

i∈F∪Ḡ\{k}

(
λ̄x
i xi + λ̄ti ti

)
.

Then, the inequalities s − min(uk, μ)zk ≤ d(C+,C−) and s − xk ≤ d(C+,C−) are
valid by the induction hypothesis as they correspond to inequalities of the form (19)
with (L−,G) = (L̄−, Ḡ\{k}) and (L−,G) = (L̄−\{k}, Ḡ\{k}), respectively. We
then apply Theorem 3 with (a1, b1, a2, b2, �, u) = (0,−μ,−1, 0, 0, uk) and obtain
m = μ, which satisfies 0 < m < uk by the assumption on G. The first equation in
(8) implies λ̄z

k = 0, and thus Theorem 3 yields the valid inequality s + λ̄x
k xk + λ̄tk tk ≤

d(C+,C−), which completes the induction. 	


Example: Suppose we have inflows with capacities u = (2, 3, 5, 8) with external
demand d = 10 and no outflows. Let f (x) = −x2. A valid flow cover is {2, 4} since
u2 + u4 = 3 + 8 = d + 1 and it gives us the following (facet-defining) simple flow
cover inequality:

(x2 + (3 − 1)(1 − z2)) + (x4 + (8 − 1)(1 − z4)) ≤ 10
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which simplifies to (x2 − 2z2) + (x4 − 7z4) ≤ 1. The tilting process gives us three
more (facet-defining) inequalities:

(x2 − 2z2) − 1

8
(t4 + 7x4) ≤ 1

−1

3
(t2 + 2x1) + (x4 − 7z4) ≤ 1

−1

3
(t2 + 2x1) − 1

8
(t4 + 7x4) ≤ 1

The first two inequalities given satisfy the assumptions of Theorem 5, while the third
does not.

5 Application to lot-sizing

The Lot-Sizing Set XLS is

XLS :=
{
(x, y, z) ∈ R

n+ × R
n+ × B

n : xi + yi−1 − yi = di , xi ≤ ui zi for i ∈ [n]
}
.

Here, for each i ∈ [n], di and ui represent the demand and capacity in period i ,
respectively, xi and yi are decision variables representing the production amount and
ending inventory in period i , respectively, and zi is a binary indicator variable equal
to one when production is positive in period i . We assume y0 = 0. To model concave
production costs, we introduce the Concave Lot-Sizing Set XCLS:

XCLS :=
{
(x, y, z, t) ∈ R

n+ × R
n+ × B

n × R
n : (x, y, z) ∈ XLS,

ti ≥ fi (xi ) for i ∈ [n]
}

where fi : R → R are concave functions with fi (0) = 0.
For 1 ≤ i ≤ � ≤ n, let Di� := ∑�

j=i d j be the cumulative demand between periods
i and �. For any � ∈ [n] and S ⊆ {1, . . . , �}, the following (�, S) inequality is valid
for XLS [3]:

∑

i∈S
xi −

∑

i∈S
Di�zi − y� ≤ 0. (20)

In the case of the uncapacitated lot-sizing problem, where ui = Din for i ∈ [n], the
(�, S) inequalities, together with the inequalities defining XLS are sufficient to define
conv(XLS) [3].

Given � ∈ [n] and S ⊆ {1, . . . , �}, S 
= ∅, choose k ∈ S and define the variable

s =
∑

i∈S\{k}
xi −

∑

i∈S\{k}
Di�zi − y�.
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Then, the inequalities s + xk − Dk�zk ≤ 0 and s ≤ 0 are both (�, S) inequalities,
defined by S and S\{k}, respectively. We can thus use these two inequalities to define
a set S≤ and Theorem 3 to derive a new tilted version of the (�, S) inequalities.

Theorem 7 Let � ∈ [n], S ⊆ {1, . . . , �} and F ⊆ S be such that Di� < ui for all
i ∈ F. For i ∈ F, let (λ̄x

i , λ̄
z
i , λ̄

t
i ) be the solution to (8) with (a1, b2, a2, b2, �, u) =

(1,−Di�, 0, 0, 0, ui ). Then, the tilted (�, S) inequality:

∑

i∈S\F
xi −

∑

i∈S\F
Di�zi +

∑

i∈F
(λ̄x

i xi + λ̄ti ti ) − y� ≤ 0, (21)

is valid for XCLS.

Proof The proof is by induction on the size of F . When F = ∅ the inequality (21) is
an (�, S) inequality and hence valid for any � ∈ [n] and S ⊆ {1, . . . , �}. Now, suppose
that inequality (21) is valid for any � ∈ [n], S ⊆ {1, . . . , �}, and F ⊆ S with Di� < ui
for all i ∈ F and |F | = c ≥ 0. Now, let � ∈ [n], S̄ ⊆ {1, . . . , �}, and F̄ ⊆ S̄ with
|F̄ | = c + 1. Let k ∈ F̄ and define

s =
∑

i∈S̄\F̄
xi −

∑

i∈S̄\F̄
Di�zi +

∑

i∈F̄\{k}
(λ̄x

i xi + λ̄ti ti ) − y�.

By the induction hypothesis, the inequalities s+ xk −Dk�zk ≤ 0 (based on S = S̄ and
F = F̄\{k})) and s ≤ 0 (based on S = S̄\{k} and F = F̄\{k}) are valid for XCLS. We
then apply Theorem 3 with a1 = 1, b1 = −Dk�, a2 = 0, b2 = 0, and obtainm = Dk�

and λ̄x
k = 0, and thus the inequality

s + λ̄x
k xk + λ̄tk tk ≤ 0

is valid for XCLS, which is equivalent to (21) with S = S̄ and F = F̄ , and hence the
induction is complete. 	


To separate the tilted (�, S) inequalities, observe that in (21), for each i ∈ [n], if
i /∈ S, then none of the variables (xi , zi , ti ) participate in the inequality; if i ∈ S\F ,
then these variables contribute the terms xi − Di�zi ; and if i ∈ F , then these variables
contribute the terms λ̄x

i x̂i + λ̄ti t̂i . Thus, given a relaxation solution (x̂, ŷ, ẑ, t̂), a most
violated tilted (�, S) inequality can be found efficiently by enumerating each � ∈ [n],
and for each fixed �, setting

S� := {
i ∈ {1, . . . , �} : max{x̂i − Di� ẑi , λ̄

x
i x̂i + λ̄ti t̂i } > 0

}
,

F� := {
i ∈ {1, . . . , �} : λ̄x

i x̂i + λ̄ti t̂i > x̂i − Di� ẑi
}
.

The most violated inequality is then obtained by considering the maximum violation
among each of these candidate n inequalities. This simple separation procedure for
the tilted (�, S) inequalities is similar in complexity to the separation procedure for
the (�, S) inequalities described in [3].
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Example: Consider an instance of the set XCLS with n = 3, d = (2, 2, 6), u =
(10, 8, 6) (so ui = Din , i = 1, 2, 3), and fi (x) = 20x − x2, i = 1, 2, 3. The (�, S)

inequality defined by � = 2 and S = {1, 2} is:

(x1 − 7z1) + (x2 − 2z2) − y2 ≤ 0.

Applying the tilting process, we find that with a1 = 1, b1 = Di2, a2 = 0, b2 = 0
and the given functions fi (x), the tilting coefficients are λ̄x

i = (20 − Di2)/ui and
λ̄ti = −1/ui . Thus, we obtain the following three additional valid inequalities with
these fixed choices of � and S:

(x1 − 7z1) +
(18
8
x2 − 1

8
t2

)
− y2 ≤ 0,

(16
10

x1 − 1

10
t1

)
+ (x2 − 2z2) − y2 ≤ 0,

(16
10

x1 − 1

10
t1

)
+

(18
8
x2 − 1

8
t2

)
− y2 ≤ 0. (22)

The point x̂ = (6, 1, 3), ŷ = (4, 3, 0), ẑ = (1, 1/2, 1/2), t̂ = (60, 12, 42) satisfies all
the (�, S) inequalities (because it is the convex combination of two feasible solutions
to XLS) and also satisfies the secant inequalities, ti ≥ ( f (ui )/ui )xi , i = 1, 2, 3.
However, substituting this point into the left-hand-side of (22) yields (96− 60)/10+
(18 − 12)/8 − 3 > 0, and so this point is cut off by a tilted (�, S) inequality.

6 Computational results

In this section, we demonstrate the effectiveness of the TSGFCI on two classes of
problems—transportation and lot-sizing problems with concave and fixed costs.

The transportation problem experiments were performed on a heterogeneous set of
servers. However, the methods being compared for each given instance were all run
on the same machine, so the relative computational time is still a meaningful statistic.
The lot-sizing problems were performed on a single Intel Xeon X5650 (24 cores @
2.66Ghz) server with 128GB of RAM. We used CPLEX 12.6.0 and BARON 14.4.0.
Each algorithm was limited to a single thread, a time limit of an hour, and a tolerance
of 10−6 for relative optimality gap. All problem instances used can be obtained at
http://pages.cs.wisc.edu/~conghan/concave/.

6.1 Concave fixed charge transportation problem

We first consider a transportation problem in which flows incur a fixed cost plus
concave variable cost. Given a set of facilities I with capacities bi , i ∈ I and a set
of customers J with demands d j , j ∈ J the Concave Fixed Charge Transportation
Problem (CFCTP) is the optimization problem:
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min
x,z,t

∑

i∈I

∑

j∈J

(
ti j + pi j zi j

)
(CFCTP)

s.t.
∑

i∈I
xi j = d j for j ∈ J

∑

j∈J

xi j ≤ bi for i ∈ I

ti j ≥ fi j (xi j ) for i ∈ I, j ∈ J

0 ≤ xi j ≤ ui j zi j for i ∈ I, j ∈ J.

The objective function models both a fixed charge pi j associated with opening arc
(i, j) and a cost that is a concave function fi j (·) of the flow on the arc.

We test our methods on randomly generated instances of the CFCTP. Given the
sizes of the sets I and J , the remaining data are generated in the following manner.
Suppliers and customers are placed uniformly at random in a unit square. The concave
functions fi j are given by fi j (xi j ) = wi j xi j − qi j x2i j , where wi j is 500 times the
Euclidean distance between i and j , and qi j = wi j/2ui j , which ensures that fi j
is increasing in the range [0, ui j ]. The fixed costs pi j are drawn uniformly from
[wi j , 5wi j ]. The demand of each customer is drawn uniformly as an integer from
[5, 35], and the capacities for each supplier is drawn uniformly from [10, 160] then
scaled and rounded to the nearest integer such that the total capacity of the suppliers
is 1.3 times the total demand. The capacities on the supplier-customer connections
are initially set to min{bi , d j } for connection (i, j), and then reduced by repeatedly
picking a connection uniformly at random and lowering its capacity by between 1
and 5 units. Once reducing a capacity makes the problem infeasible, the process was
stopped. For a fixed problem size, we created a family of ten instances.

The fixed charge network structure of (CFCTP) yields Single Node Flow Set relax-
ations (10) fromwhich valid “base inequalities” of the form (14) may be generated. To
obtain base inequalities that can be tilted, each instance is solvedwith CPLEX v12.6.0.
CPLEX allows the solution of optimization problems with a nonconvex quadratic
objective function, so (CFCTP)was reformulated into the equivalent formulationwith-
out the ti j variables. The only types of cuts we allowed CPLEX to use were flow cover
cuts, and the cuts that were applied by CPLEX at the end of the root node processing
were extracted. These cuts were used as the basis of a tilting procedure similar to the
one described in Sect. 4.1. The derivation there starts with a valid inequality of the form

∑

i∈M+
(αi xi + βi zi ) +

∑

i∈N\M+
(π x

i xi + π z
i zi ) ≤ γ

where M+ contains the indices for which the base inequality has αi > 0, βi < 0, and
αi ui+βi > 0. The derivation then shows that, for any k ∈ M+, the inequality sk ≤ γ is
valid, where sk := ∑

i∈M+\{k}(αi xi+βi zi )+∑
i∈N\M+(π x

i xi+π z
i zi ), and this assures

the tilted inequalities of the form (15) are valid under the assumptions of Theorem 4.
In Sect. 4.1, validity of sk ≤ γ is checked by using the particular structure of the set
XSNFS. Since we cannot be sure that the cuts generated by CPLEX are valid for such
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a set, in our implementation we computationally verify that the inequalities sk ≤ γ

are valid over the feasible region, for eack k ∈ M+. We do this by computing max sk
over the feasible region of the mixed-integer linear set of the instance, and then check
that the optimal value is not greater than γ . Because these are relatively small mixed-
integer linear programs, it took less than a second for each problem instance to verify
validity of all possible sk ≤ γ constraints across all base cuts generated by CPLEX.

CPLEX also is often able to tighten the upper bounds ui j on the flow variables,
and we also extract and use these improved values in computing the lifting coefficient
via (8). In our experiments, we consider tilting only the variables in the set M+ (via
Theorem 4) and do not test the more general TSGFCI of Theorem 6.

Using the extracted base valid inequalities from CPLEX, tilted inequalities (15)
are added in a separation loop using the optimal lifting set F = F∗ (defined in (16))
until no more inequalities can be separated. In addition, for each base inequality we
also add all tilted inequalities (15) with |F | ≤ 2. We remark that this implementation
potentially underestimates the benefits from using the tilted inequalities, since we are
using valid inequalities that are generated without knowledge of the tilting procedure.
An integrated procedure that directly searches for tilted inequalities could potentially
identify additional violated inequalities.

We compare the performance of four different solution approaches: using CPLEX
with default options on the reformulation that eliminates the t variables, usingBARON
on the original problem (B), using BARONon the problem supplementedwith implied
bounds and valid inequalities extracted by CPLEX (BVI), and finally using BARON
with the settings of (BVI) plus the additional tilted inequalities (15) added (BT). We
could not test the performance of CPLEX with the inequalities (15) because CPLEX
does not allow nonconvex constraints, and so the formulation used in CPLEX does
not contain the necessary t variables.

We present a summary of our computational results in Tables 1 and 2 and Fig. 2.We
omit the results for CPLEX in the tables since themethods using BARON significantly
outperform it. The numbers reported for each problem family in the tables are averaged
over the 10 instances.

Table 1 reports statistics on the cuts and initial relaxations. The Number of Cuts
columns denote the average number of each class of cuts generated over the 10
instances. The Initial Gap columns indicate the the gap between the solution of the
LP relaxation of the problem and the best feasible solution among all methods. The
SEC, VI, and T columns correspond to the secant relaxation, the secant relaxation with
valid inequalities from CPLEX, and the secant relaxation with valid inequalities from
CPLEX and tilted inequalities (15), respectively. The Root Gap columns indicate the
gap between the lower bound at the root node of BARON and the best solution among
all methods, which includes the effect of cuts, bounds tightening, and other prepro-
cessing that BARON performs at the root node. For all these instances, the time taken
to generate the cuts is less than a few seconds.We find that the processing that BARON
performs at the root node significantly improves the relaxation gaps. The initial gap
is often significantly improved by adding the CPLEX valid inequalities. However,
the bounds obtained after BARON processes the root node are not affected by the
addition of these valid inequalities to the formulation. On the other hand, adding the
tilted inequalities improves the initial gap modestly, but leads to significantly reduced
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Table 1 Average number of cuts and relaxation gaps for the CFCTP

Instance family Number of cuts Initial gap Root gap

Suppliers Customers Flow covers Tilts SEC (%) VI (%) T (%) B (%) BVI (%) BT (%)

10 10 36.1 41.9 16.10 8.68 6.35 7.85 7.85 4.10

10 15 43.9 45.9 15.07 8.06 5.63 7.61 7.61 3.50

15 12 45.1 61 14.80 8.46 6.86 7.10 7.10 4.02

12 18 54.6 77.9 18.03 10.47 8.17 8.41 8.41 4.43

15 15 50.5 59.1 14.53 8.71 6.89 7.72 7.72 4.42

18 18 67.1 102.7 15.23 8.62 6.79 6.94 6.94 3.67

Table 2 Number of instances solved and average ending optimality gaps for the transportation problem

Instance family Instances solved Final gap

Suppliers Customers B BVI BT B (%) BVI (%) BT (%)

10 10 10 10 10 0.00 0.00 0.00

10 15 3 3 7 3.19 2.27 0.95

15 12 4 4 8 2.16 2.04 0.40

12 18 0 0 3 5.96 5.45 2.52

15 15 1 1 5 4.79 4.61 2.09

18 18 0 0 0 5.47 5.36 2.59

Fig. 2 Cumulative distribution
plots of solution times for the
transportation problem. The
plots from top to bottom
correspond to the order of the
labels in the legend

gap after BARON processes the root node, closing nearly 50% of the gap relative to
BARON’s root node relaxation without the tilted inequalities.

Table 2 reports results obtained after running the methods to termination or the time
limit. Instances Solved indicates how many out of 10 instances each method is able to
solve within an hour. The Final Gap columns indicates the average gap between the
lower bound the method achieves within the time limit and the best solution among
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all methods. We observe that BT solves almost twice as many instances within the
time limit (32 versus 18/19 for B and BVI), and for unsolved instances BT is able to
close substantially more of the gap than BVI. The set of instances solved for BT is a
strict superset of those for BVI, which is in turn a superset of those solved for B (and
CPLEX).

Figure 2 presents a plot of the cumulative distribution of solution times over the
32 instances that are solved by at least one method. Each plot indicates the number
of instances that have been solved by a certain time. The performance for BT sig-
nificantly dominates all other methods, and BVI shows a slight improvement over B,
demonstrating that the valid inequalities fromCPLEXmake a small but significant dif-
ference, whereas the tilted valid inequalities yield large improvements in computation
time.

6.2 Lot-sizing problem with concave costs

We now consider an adaptation of the canonical Lot-Sizing Problem with concave
costs. Using the notation from Sect. 5, the concave-cost lot-sizing problem is:

min
x,y,z,t

{ ∑

i∈[n]
(hi yi + pi zi + ti ) : (x, y, z, t) ∈ XCLS

}
,

where, for each i ∈ [n], the variables ti encode the variable production cost, fi (xi ),
hi represents the per-unit cost of holding an item in inventory, and pi represents the
fixed setup cost that is incurred if xi > 0.

We created our test instances based on an extension of the instance generation
process used in [1]. Each family of instances is identified by three parameters — the
number of time periods n ∈ {70, 90}, the ratio between the production capacity and
total demand c ∈ {3, 10, uncap}, and the approximate setup cost r ∈ {200, 500}.
When c ∈ {3, 10} the production capacity in period i ∈ [n], ui , is an integer
drawn uniformly from [0.75cd̄, 1.25cd̄], and when c = uncap, the production is
uncapacitated, so we set ui = Din . There exist polynomial algorithms for solving
the concave-cost lot sizing problem in the uncapacitated case (e.g., [10,14,15,27]).
However, we are still interested in conducting experiments on this case to investi-
gate the impact of our cuts when a general purpose solution approach is applied
to this problem. For each period i ∈ [n], per unit holding cost hi is 10, and
the demand di is an integer drawn uniformly from [1, 19]. Let d̄ denote the aver-
age demand of an instance. The setup cost pi is an integer drawn uniformly from
[9r, 1.1r ]. For i ∈ [n], we use fi (xi ) = wi xi − qi x2i , where wi is an inte-
ger drawn uniformly from [81, 119] and qi = wi/2ui , which ensures that fi is
nondecreasing on [0, ui ]. We created five instances for each combination of the
parameters n, c, r , and the results reported in all tables are averages over these five
instances.

We use (�, S) inequalities and tilted (�, S) inequalities in a cut-and-branch fashion.
We first build and solve the secant relaxation, in which the binary variables are relaxed
to be continuous, and the constraints ti ≥ f (xi ) are replaced by ti ≥ ( f (ui )/ui )xi .
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Table 3 Average relaxation gaps for the lot-sizing problem

Instance family Initial gap Root gap

n c r SEC (%) LS (%) T (%) B (%) BLS (%) BT (%)

70 3 200 10.18 6.25 6.25 0.94 1.08 1.12

70 3 500 9.61 7.42 7.42 0.39 0.51 0.49

70 10 200 31.22 9.36 4.40 6.48 6.48 0.20

70 10 500 27.06 7.82 7.07 2.13 2.13 0.50

70 Uncap 200 53.06 25.29 2.89 23.25 23.10 0.04

70 Uncap 500 53.95 20.53 4.84 16.28 10.94 0.04

90 3 200 10.53 6.08 6.08 1.34 1.53 1.54

90 3 500 7.44 5.54 5.54 1.06 1.13 1.16

90 10 200 30.96 8.31 3.41 6.13 6.13 0.12

90 10 500 27.72 7.29 6.61 2.28 2.28 0.64

90 Uncap 200 56.15 26.11 2.39 24.39 24.28 0.01

90 Uncap 500 57.30 20.72 3.80 17.80 14.61 0.01

Given the solution of this relaxation, the most violated inequality in the class being
used ((�, S) inequalities or tilted (�, S) inequalities) is found and added to the
relaxation. The relaxation is then re-solved and the process repeated until no fur-
ther violated cuts are identified. Note that (�, S) inequalities are a special case of
tilted (�, S) inequalities, so when using tilted (�, S) inequalities there is no need
to search explicitly for (�, S) inequalities. After this process terminates, the cuts
identified throughout this process are included in the formulation that is passed to
BARON.

We compare the performance of four different solution approaches: using CPLEX
with default options on the reformulation that eliminates the t variables; usingBARON
to solve the original formulation (B); using BARON to solve the formulation sup-
plemented with (�, S) inequalities (BLS); and finally using BARON to solve the
formulation supplemented with tilted (�, S) inequalities (BT).

We first investigate the impact of the tilted (�, S) inequalities on the initial
relaxation. For a given relaxation and instance, we compute the optimality gap as
(z∗ − LB)/z∗ where z∗ is the optimal value of that instance and LB is the lower bound
produced by that relaxation. Table 3 presents the optimality gaps obtained before and
after BARON has processed the root node. The Initial Gap columns report the aver-
age optimality gaps of the secant relaxation (SEC), the secant relaxation with (�, S)

inequalities (LS), and the secant relaxation with tilted (�, S) inequalities (T). The Root
Gap columns indicate the gap obtained by BARON after processing the root node,
e.g., by adding general-purpose valid inequalities performing bounds tightening, and
other preprocessing techniques. Considering first the initial gaps, we find that using
the (�, S) inequalities yields significantly smaller gaps than the basic secant relaxation,
and that tilted (�, S) inequalities further reduce the gaps significantly when c = 10 or
c = uncap, but have little impact when c = 3. We also find the impact from the tilted
(�, S) inequalities to be relatively smaller when the fixed cost parameter, r , is higher.
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Table 4 Average number of
cuts and time to generate them
for the lot-sizing problem

Instance family Number of cuts Time (s)

n c r (�, S) Tilt (�, S) (�, S) Tilt (�, S)

70 3 200 36.8 39.4 0.9 0.9

70 3 500 24.4 29.8 0.6 0.7

70 10 200 127.8 183.2 2.9 4.3

70 10 500 132.0 154.2 3.0 3.5

70 Uncap 200 794.2 1269.6 19.7 42.6

70 Uncap 500 626.0 979.2 16.0 32.9

90 3 200 53.8 54.4 1.7 1.7

90 3 500 32.2 36.2 1.0 1.1

90 10 200 155.6 212.6 4.8 6.7

90 10 500 164.8 181.6 5.0 5.6

90 Uncap 200 1558.2 2442.2 58.4 149.7

90 Uncap 500 1259.6 1957.8 47.8 116.2

When c is relatively small, or r is relatively high, the relaxation solutions will tend
to have xi near its upper bound ui whenever zi = 1, and hence the error between the
secant relaxation and the true concave cost is expected to be lower, which explains
why the tilted (�, S) inequalities have less relatively impact in those cases. We also
find that in all cases BARON is able to reduce the root gaps significantly, but that
the relative performance of using (�, S) inequalities and tilted (�, S) inequalities is
unchanged.

In Table 4 we present information on the number of cuts generated when using
(�, S) inequalities and tilted (�, S) inequalities, and the time spent performing the
cut-generation process (including separation time and time re-solving the relaxation).
In general, the number of cuts added increases as n or c increase or when r decreases.

Finally, Table 5 summarizes the results for solving the instances to optimality, and
Fig. 3 presents cumulative distribution plots of the solution times for the different
methods. The Instances Solved columns present how many of the five instances for
the given set of parameterswere solved, and theFinalGap columns present the average
gap between the lower bound the method achieves within the time limit and the best
solution among all methods. From Table 5 we find that when c = 10 or c = uncap,
the tilted (�, S) inequalities enable solving many more instances to optimality within
the time limit, and that without them large optimality gaps may remain. On the other
hand, when c = 3, the results from using tilted (�, S) inequalities are similar to those
obtained without them, which is consistent with the observations on the effect of the
tilted (�, S) inequalities on the root gaps. Figure 3 demonstrates that using the tilted
(�, S) inequalities can significantly reduce solution times. For example, more than half
the instances can be solved in under 250s when using the tilted (�, S) inequalities,
whereas less than half of the instances are solved within the 1h time limit when the
tilted (�, S) inequalities are not used.
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Table 5 Number of instances solved and average ending optimality gaps for the lot-sizing problem

Instance family Instances solved Final gap

n c r B BLS BT B (%) BLS (%) BT (%)

70 3 200 4 4 5 0.02 0.03 0.00

70 3 500 5 5 5 0.00 0.00 0.00

70 10 200 0 0 5 5.82 3.04 0.00

70 10 500 5 5 5 0.00 0.00 0.00

70 Uncap 200 0 0 5 17.39 17.44 0.00

70 Uncap 500 0 2 5 10.29 2.35 0.00

90 3 200 1 1 1 0.31 0.34 0.33

90 3 500 3 4 2 0.02 0.06 0.11

90 10 200 0 0 5 5.51 3.35 0.00

90 10 500 2 3 5 0.55 0.44 0.00

90 Uncap 200 0 0 5 21.04 17.39 0.00

90 Uncap 500 0 0 5 12.51 9.77 0.00

Fig. 3 Cumulative distribution
plots of solution times for the
lot-sizing problem. The plots
from top to bottom correspond
to the order of the labels in the
legend

7 Conclusion

We study valid inequalities for a mixed-integer nonlinear set having binary indicator
variables and separable concave constraints. We introduce a technique that obtains
valid inequalities for this set by applying a tilting procedure to inequalities that are
known for the set ignoring the concave constraints.We apply this procedure to versions
of this set in which the linear constraints correspond to network flow and lot-sizing
problems, and find that the new inequalities yield significant reductions in solution
times. In future work, it will be interesting to test the proposed procedure on addi-
tional problems having this network structure, and to investigate the application of the
proposed tilting procedure to other mixed-integer nonlinear structures.

Acknowledgements The work was supported in part by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, AppliedMathematics program under Contract Number
DE-AC02-06CH11357.
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Appendix: Proof of Theorem 5

Before stating the proof, which roughly follows the structure of the proof of Theorem
6 in [26], we establish some notation and some preliminary results. We denote a point
p ∈ XCSNFS

f as

p = ((1x, 1z, 1t), (2x, 2z, 2t), (3x, 3z, 3t), (4x, 4z, 4t), (5x, 5z, 5t))

where the left superscript indicates if the coordinates correspond to the values (1)
C+\F , (2) F , (3) N+\C+, (4) L−, or (5) N−\L−. Let j u denote the vector of uk
values associated with the j th set defined above.

We prove the theorem by giving 3n affinely independent points of XCSNFS
f that lie

on the face defined by (18) and define the coefficients in the inequality (18) up to a
scalar multiple. Since the solution with all variables set to zero is in XCSNFS

f , but does
not lie on the face defined by (18), this implies that XCSNFS

f is full-dimensional.
We tackle the proof in four separate parts. We first describe 3|C+\F | points, then

3|F | points, followed by 3|N+\C+| points, and finally the remaining 3|N−| points.
The points are defined in the arguments that follow. We let

∑

k∈N
(π x

k xk + π z
k zk + π t

k tk) = π0. (23)

denote the equality defined by these (yet to be defined) points. In the proofs that
follow, we use f (i x) to denote the vector of function values consisting of fk(xk) for
k corresponding to the set indicated by i . It can readily be checked that the 3n points
we define are in XCSNFS

f and satisfy (18) at equality.

Lemma 2 The equality (23) has the form

σ

( ∑

k∈C+\F

(
xk − (uk − μ)+zk

) )
+

∑

k∈N\(C+\F)

(π x
k xk + π z

k zk + π t
k tk) = π0.

Proof The proof proceeds by showing thatπ t
k ,π

x
k , andπ z

k (in this order) for k ∈ C+\F
have the form given in the statement of the lemma.

We describe a set of 3|C+\F | points. From here on, we will use 1 to denote the
all-ones vector. We first define points for k ∈ C+\F where uk ≥ μ:

ak = ((1u − μek, 1, f (1u − μek)), (
2u, 1, f (2u)), 0, . . . , 0)

bk = ((1u − ukek, 1 − ek, f (1u − ukek)), (
2u, 1, f (2u)), 0, . . . , 0)

ck = ((1u − ukek, 1 − ek, f (1u − ukek) + 1), (2u, 1, f (2u)), 0, . . . , 0).
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When uk < μ, we pick a scaling term

ηk =
∑

j∈C+\F u j − μ
∑

j∈C+\F u j − uk
.

By assumption (ii), it is straightforward to see that 0 < ηk < 1 and

ηk

( ∑

j∈C+\(F∪{k})
u j

)
+

∑

j∈F
u j = d.

Then, we form the following points for k ∈ C+\F with uk < μ:

ak = ((ηk(
1u − ukek), 1, f (ηk(

1u − ukek))), (
2u, 1, f (2u)), 0, . . . , 0)

bk = ((ηk(
1u − ukek), 1 − ek, f (ηk(

1u − ukek))), (
2u, 1, f (2u)), 0, . . . , 0)

ck = ((ηk(
1u − ukek), 1 − ek, f (ηk(

1u − ukek)) + 1), (2u, 1, f (2u)), 0, . . . , 0).

By comparing bk and ck for each k ∈ C+\F , we get π t
k = 0 for k ∈ C+\F .

For the points ak corresponding to uk ≥ μ and ak, bk, ck to uk < μ, the sum of
the terms in C+ for these points gives us d and so

∑

j∈C+\F
x j = d −

∑

j∈F
u j . (24)

Now consider the ak points for k ∈ C+\F . The |C+\F | vectors in the two sets
{
1u − μek : k ∈ C+\F, uk ≥ μ

}
⊆ R

|C+\F |
{
ηk(

1u − uek) : k ∈ C+\F, uk < μ
}

⊆ R
|C+\F |

are linearly independent and have the same sum.This implies that for all the k ∈ C+\F
we have π x

k = σ for some σ ∈ R. We obtain the equality

π0 =
∑

j∈C+\F
σ x j +

∑

j∈C+\F
π z
j +

∑

j∈F

(
π x
j x j + π z

j z j + π t
j t j

)

= σ
(
d −

∑

j∈F
u j

)
+

∑

j∈C+\F
π z
j +

∑

j∈F

(
π x
j u j + π z

j + π t
j f j (u j )

)
(25)

where the second equality follows from (24).
For each bk for k ∈ C+\F where uk ≥ μ, we get

σ
( ∑

j∈C+\(F∪{k})
u j

)
+

∑

j∈C+\(F∪{k})
π z
j +

∑

j∈F

(
π x
j u j + π z

j + π t
j f j (u j )

) = π0. (26)
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Subtracting (26) from (25), we obtain

σ
(
d −

∑

j∈C+\{k}
u j

)
+ π z

k = 0,

which reduces to σ(μ − uk) = π z
k . As for k ∈ C+\F where uk < μ, the bk points

gives us

π0 =
∑

j∈C+\F
σ x j +

∑

j∈C+\(F∪{k})
π z
j +

∑

j∈F
(π x

j x j + π z
j z j + π t

j t j )

= σ
(
d −

∑

j∈F
u j

)
+

∑

j∈C+\(F∪{k})
π z
j +

∑

j∈F
(π x

j u j + π z
j + π t

j f j (u j )) (27)

using (24) again. By subtracting (27) from (25), we have π z
k = 0. 	


Lemma 3 The coefficients π x
k , π z

k , π
t
k for equality (23)when k ∈ F satisfy the follow-

ing: π x
k = σ λ̄x

k , π
z
k = σ λ̄z

k , and π t
k = σ λ̄tk , where λ̄x

k , λ̄
z
k, λ̄

t
k are the terms obtained

by applying Theorem 3 for the case where a1 = 1, b1 = μ − uk, and a2 = b2 = 0.

Proof Recall from assumption (v) that uk > μ for k ∈ F . We define the following
points associated with each k ∈ F :

ak = ((1u, 1, f (1u)), (2u − μek, 1, f (2u − μek)), 0, . . . , 0)

bk = ((1u, 1, f (1u)), (2u − ukek, 1, f (2u − ukek)), 0, . . . , 0)

ck = ((1u, 1, f (1u)), (2u − ukek, 1 − ek, f (2u − ukek)), 0, . . . , 0).

Comparing bk and ck for k ∈ F , we get that π z
k = 0 for k ∈ F , which is the same as

the value of λ̄z
k derived from (8) since �k = f (�k) = 0.

From ak and bk , we know that

π x
k (uk − μ) + π t

k f (uk − μ) = 0. (28)

Furthermore, from comparing ak and al for some l ∈ C+\F where ul ≥ μ, we have

0 = σμ − π x
k μ − π t

k

(
fk(uk) − fk(uk − μ)

)

= σμ + π x
k (uk − μ) + π x

k fk(uk − μ) − π t
k fk(uk) − π x

k uk
= σμ − π t

k fk(uk) − π x
k uk (29)

where (29) is obtained by applying (28). Equations (29) and (28) allow us to form the
following system of linear equations akin to (8) from Theorem 3:

⎛

⎝
0 1 0
uk − μ 1 fk(uk − μ)

uk 1 fk(uk)

⎞

⎠ ·
⎛

⎝
π x
k

0
π t
k

⎞

⎠ =
⎛

⎝
0
0
σμ

⎞

⎠
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which gives us π x
k = σ λ̄x

k , π
t
k = σ λ̄tk , where λ̄x

k , λ̄
t
k are the terms obtained from (8)

for the case where a1 = 1, b1 = μ − uk, a2 = 0, b2 = 0. 	

Lemma 4 π0 = σd(C+,∅).

Proof We begin with (25) and consider the coefficients we obtained in Lemmas 2 and
3:

π0 = σ
(
d −

∑

j∈F
u j

)
+

∑

j∈C+\F
π z
j +

∑

j∈F

(
π x
j u j + π z

j + π t
j f j (u j )

)

= σ
(
d −

∑

j∈F
u j

)
−

∑

j∈C+\F
σ(uk − μ)+ +

∑

j∈F

(
π x
j u j + π z

j + π t
j f j (u j )

)

= σ
(
d −

∑

j∈F
u j

)
−

∑

j∈C+\F
σ(uk − μ)+ +

∑

j∈F
σμk

= σ
(
d −

∑

j∈C+
(uk − μ)+

)
.

The second equality follows from Lemma 2, the third from (29) and Lemma 3, and
the final from the fact that all μk > μ for all k ∈ F . 	


Building on the previous lemmas, we now complete the proof of Theorem 5.

Proof of Theorem 5 We first define 3|N+\C+| more points. From assumption (ii) of
the theorem, we know that there is some coordinate l ∈ C+ where ul > μ. Depending
onwhether l is inC+\F or in F , we define the following vector v ∈ R

|C+| accordingly:

vC
+ =

{
((1u − ulel , 1 − el , f (1u − ulel)), (2u, 1, f (2u))), if l ∈ C+\F
((1u, 1, f (1u)), (2u − ulel , 1, f (2u − ulel))), if l ∈ F.

This allows us to consider the following points:

for k ∈ N+\C+ :
ak = (vC

+
, (0, ek, 0), 0, . . . , 0)

bk = (vC
+
, (εek, ek, f (εek)), 0, . . . , 0)

ck = (vC
+
, (εek, ek, f (εek) + 1), 0, . . . , 0),

By comparing ak , bk and ck for each k, we know that π x
k = π t

k = 0. Furthermore,
by comparing ak to bl (as defined in Lemma 2 or 3 depending on which set index l
belongs to), we have π z

k = 0.
We now focus on points corresponding to N−. Let

vN+ = ((1u, 1, f (1u)), (2u, 1, f (2u)), (0, 0, 0)).
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We define the following 3|L−| points for k ∈ L−:

ak = (vN+
, (μek, ek, f (μek)), (0, 0, 0)),

bk = (vN+
, (ukek, ek, f (ukek)), (0, 0, 0)),

ck = (vN+
, (ukek, ek, f (ukek) + 1), (0, 0, 0)).

From comparing ak, bk , and ck we get π x
k = π t

k = 0. Now consider the point ak and
compare this to the point al again. By subtracting al from ak and applying Lemma
2, we get π z

k = −σμ. Recall from assumption (iii) of Theorem 5 that uk > μ for
k ∈ L−, so π z

k = −σ min(uk, μ) as desired.
For the last 3|N−\L−| points, we use the following scaling terms:

η =
∑

j∈C+\F u j − μ
∑

j∈C+\F u j
, ηε =

∑
j∈C+\F u j − (μ − ε)

∑
j∈C+\F u j

.

For ε > 0 small enough, η and ηε are strictly between 0 and 1 due to assumption (vi).
We define:

vN\L− = ((η 1u, 1, f (η 1u)), (2u, 1, f (2u)), (0, 0, 0), (0, 0, 0)),

vN\L−,ε = ((ηε 1u, 1, f (ηε 1u)), (2u, 1, f (2u)), (0, 0, 0), (0, 0, 0)),

which we use to define the following points for each k ∈ N−\L−:

ak = (vN\L−
, (0, ek, 0)),

bk = (vN\L−,ε, (εek, ek, f (εek))),

ck = (vN\L−,ε, (εek, ek, f (εek) + 1)).

We have π t
k = 0 from comparing bk and ck , and comparing ak to al again shows that

π z
k = 0. Comparing ak and bk and using Lemma 2, this implies that π x

k = −σ .
Thus, we know that any equality that touches these 3n points has to have a form of

inequality (18) up to a scaling factor. We know that inequality (18) is valid for our set,
so all that remains is to prove that this equality contains a facet instead of the entire
set XCSNFS

f . The point given by ((0, 1, 0), 0, · · · , 0) does not satisfy this equality. 	
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25. Üster, H., Dilaveroğlu, S.: Optimization for design and operation of natural gas transmission networks.

Appl. Energy 133, 56–69 (2014)
26. Van Roy, T.J., Wolsey, L.A.: Valid inequalities for mixed 0–1 programs. Discrete Appl. Math. 14(2),

199–213 (1986)
27. Zangwill, W.: Minimum concave cost flows in certain networks. Manag. Sci. 14(7), 429–450 (1968)

123

Author's personal copy


	Valid inequalities for separable concave constraints with indicator variables
	Abstract
	1 Introduction
	2 Motivation: the set mathcalZcapmathcalT
	3 A low-dimensional mixed-integer nonlinear set
	4 Application to single node flow set
	4.1 Valid inequalities for XCSNFSf
	4.2 Tilting flow cover inequalities

	5 Application to lot-sizing
	6 Computational results
	6.1 Concave fixed charge transportation problem
	6.2 Lot-sizing problem with concave costs

	7 Conclusion
	Acknowledgements
	Appendix: Proof of Theorem 5
	References




