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Abstract We study the chance-constrained vehicle routing problem (CCVRP), a ver-
sion of the vehicle routing problem (VRP) with stochastic demands, where a limit is
imposed on the probability that each vehicle’s capacity is exceeded. A distinguishing
feature of our proposed methodologies is that they allow correlation between ran-
dom demands, whereas nearly all existing exact methods for the VRP with stochastic
demands require independent demands. We first study an edge-based formulation for
the CCVRP, in particular addressing the challenge of how to determine a lower bound
on the number of vehicles required to serve a subset of customers. We then investigate
the use of a branch-and-cut-and-price (BCP) algorithm. While BCP algorithms have
been considered the state of the art in solving the deterministic VRP, few attempts have
been made to extend this framework to the VRP with stochastic demands. In contrast
to the deterministic VRP, we find that the pricing problem for the CCVRP problem is
stronglyNP-hard, even when the routes being priced are allowed to have cycles. We
therefore propose a further relaxation of the routes that enables pricing via dynamic
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programming. We also demonstrate how our proposed methodologies can be adapted
to solve a distributionally robust CCVRP problem. Numerical results indicate that the
proposed methods can solve instances of CCVRP having up to 55 vertices.

Keywords Stochastic vehicle routing ·Chance constraint ·Branch-and-cut-and-price

Mathematics Subject Classification 90C10 · 90C15 · 90B06

1 Introduction

The deterministic vehicle routing problem (VRP) [12] is the problem of finding routes
for a fleet of identical, fixed capacity vehicles that collect known amounts of goods
from customers. When demands of customers are random variables, the problem is
referred to as the vehicle routing problem with stochastic demands (VRPSD). In an
optimization model for the VRPSD, one must determine how to handle the possibility
that the demands on a planned route might exceed the capacity of a vehicle. One
approach, taken, e.g., in [4,16,31,33,36], is to consider a recourse model, in which a
recourse action must be taken if a vehicle’s capacity is exceeded. This leads to a two-
stage stochastic programming formulation, in which routes are determined in advance
of knowing the random demands, and then, when the routes are implemented and
demands are observed, recourse actions are taken if a vehicle’s capacity is exceeded.
The objective is to minimize the expected travel cost, including travel taken in the
recourse stage. In order tomake the evaluation of the expected recourse costs tractable,
restrictive assumptions are usually placed on the form of the recourse taken (e.g., that
it consists of a trip to/from the depot) and on the random demands. In particular, nearly
all existing work assumes the random demands are independent of each other.

We study an alternative model, the chance-constrained VRP (CCVRP), which does
not explicitly model the recourse actions to be taken when a vehicle’s capacity is
exceeded, and instead requires that such an event happens with low probability. This
type of model leads to operational benefits like more consistent service and less need
for complex recourse actions to be taken. We also consider a distributionally robust
extension of the problem, inwhich the distribution of the customer demands is assumed
to be unknown, and the goal is to obtain routes that are feasible to the chance constraint
for all distributions within a given set. The first attempt to solve the CCVRP was
proposed in [33], where conditions are derived under which CCVRP can be reduced
to a deterministic VRP. These conditions are restrictive, as they require customer
demands to be independent and have identical coefficients of variation. In [25], the first
exact solution technique for CCVRPwas proposed using a branch-and-cut framework,
but their implementation requires random demands to be independent and normally
distributed. More recently, in [3] a formulation is proposed for a generalization of the
CCVRP where service is required on both customers and the roads connecting them.
This method is limited to (not necessarily independent) joint normally distributed
customer demands, and the formulation has O(n2K ) variables, where n is the number
of customers and K is the number of vehicles, and exhibits symmetry in the case of
identical vehicles. The largest instances reported to be solved optimally have about
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10 customers, although promising heuristic methods are also proposed. In [21] the
robust capacitated VRP is studied, where the constraint is that the capacity of the
vehicles must be satisfied by all possible realizations of demands in an uncertainty set.
Two special cases of the problems we study are equivalent to a robust constraint with
ellipsoidal uncertainty set (e.g., [5]): a chance constraintwith joint normally distributed
randomdemands, and the distributionally robust chance constraintwithmoment-based
uncertainty. Thus, in these cases themethods in [21] can be applied. Indeed, the authors
of [21] briefly mention this connection and give a more detailed discussion to it in
the e-companion. Unfortunately, although their approach can solve some instances
of the robust capacitated VRP problem with around 100 customers under specific
polyhedral uncertainty sets, the approach is not as successful for instances that were
transformed from the CCVRP and the results in the e-companion onlymention solving
such instances with at most 23 customers.

In terms of methodology, the current best known algorithms for solving the deter-
ministic VRP are based on a Dantzig–Wolfe reformulation, strengthened by valid
inequalities, solved using a branch-and-cut-and-price (BCP) algorithm [1,2,11,19,
29]. On the other hand, very little work has attempted to apply the BCP framework to
solve a recourse-based or chance-constrained VRPSD model, or a robust VRP model.
Most of the exact solution techniques for the recourse-based VRPSD models rely on
variants of the integer L-Shaped method proposed by [27] or the branch-and-price
algorithm proposed by [8], while most of the attempts to solve the CCVRP rely on
variants of the branch-and-cut algorithms proposed in [25,26]. To the best of our
knowledge, the only work that considers solving a VRPSDmodel using BCP has been
proposed by [20], but is again restricted to the assumption that random demands are
independent.

In this work, we present branch-and-cut andBCPmethods for the CCVRPwhich do
not require the customer demands to be independent, and are able to solve to optimal-
ity, or near-optimality, instances with more than 50 customers. The only assumption
we require on the customer demands is that we can compute a quantile of the random
variable defined by the sum of customer demands in any subset of customers. This
assumption holds for customer demands having joint normal distribution and for a
scenario model of customer demands. We note that, using sample average approxi-
mation, the scenario model can be used to approximate a problem in which customer
demands follow any distribution from which samples can be taken [28]. In the case of
joint normally distributed random demands, our results complement those of [21] by
demonstrating that the use of the edge-based formulation with capacity inequalities
is viable for the robust capacitated VRP with ellipsoidal uncertainty set, and also by
introducing a BCP approach for that problem class.

We begin in Sect. 2 by presenting the edge-based formulation of [25] and derive
strong and computationally tractable bounds on the number of vehicles required to
serve a subset of customers and remain chance constraint feasible, leading to improved
capacity inequalities. This allows us to extend the formulation of [25] to more general
cases. In Sect. 3, we explore the use of BCP for solving the CCVRP. We find that
a direct extension of the pricing routine used in BCP for the deterministic VRP is
challenging since the associated pricing problem is stronglyNP-hard (as opposed to
pseudopolynomially solvable in the deterministic case) even when the distribution of
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random demands is a finite scenario model or consists of independent normal random
variables. We thus propose a relaxed pricing scheme to overcome this challenge.
In Sect. 4, we discuss how the proposed methodology can be adapted to solve a
distributionally robust version of the problem. Finally, in Sect. 5, we present results
of a computational study which demonstrate that the proposed methods can solve
instances of CCVRP with up to 55 customers. We find that the improved bounds we
obtain on the number of vehicles required to serve a subset of customers are critical
for solving these instances, and we also find that the BCP approach is beneficial for the
largest of the test instances. We also empirically compare the solutions obtained with
the CCVRP model to those obtained with a recourse-based model of the VRPSD, and
find that the CCVRP solutions provide high quality solutions to the recourse-based
model, whereas the reverse is often not true.

An extended abstract of this paper appeared in [14]. This full version of the paper
contains all proofs that were omitted in the extended abstract, presents an addi-
tional strong NP-hardness proof for pricing under independent normal demands,
and discusses the extension of the proposed methodology to solve problems with a
distributionally robust chance constraint. We also provide additional implementation
details, especially about a heuristic that we used to obtain initial solutions to the
CCVRP, which may be independently interesting. Finally, in the special case where
demands are normally distributed, we take advantage of the results in [21] to obtain
improved bounds (as compared to those in [14]) on the number of trucks required to
serve a set of customers.

2 Problem definition and an edge-based formulation

Let G = (V, E) be an undirected graph with vertices V = {0, 1, . . . , n}. Vertex 0
represents the depot and the vertices V+ = {1, . . . , n} represent the customers. Each
customer i ∈ V+ has a random demand Di . The set of demands D is a random vector
defined in a probability space (Ω,F ,P). The expected value and variance of demand
for customer i ∈ V+ are denoted by di and σ 2

i , respectively. The length of edge e ∈ E
is denoted by �e ≥ 0. There are K available vehicles and each vehicle has a capacity
of b. A route is a simple cycle C going through 0 (or an edge 0v twice, representing
the route 0 − v − 0 for v ∈ V+). We say a route serves S if V (C) \ {0} = S. A
chance-constraint feasible route is a route for which the set of customers S ⊆ V+ that
it serves satisfies P{D(S) ≤ b} ≥ 1 − ε, where ε ∈ (0, 1) is a given, typically small,
parameter. Above, and throughout the rest of the paper, we use the following notation:
given values wt for a ground set T , for any Q ⊆ T we denote w(Q) := ∑

t∈Q wt .
The objective is to find a minimum length set of K chance constraint feasible routes

such that every customer is visited exactly once.

2.1 Edge-based formulation

Let xe represent the number of times edge e is used in a solution. For S ⊆ V , we
let δ(S) be the cut-set defined by S, and for S ⊆ V+, we let rε(S) be the minimum
number of vehicles needed to serve customer set S with chance-constraint feasible
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routes. We call rε(S) the minimum vehicle requirements. The edge-based formulation
is then [25]:

min
x

∑

e∈E
�exe (1a)

s.t.
∑

e∈δ({i})
xe = 2 i ∈ V+ (1b)

∑

e∈δ({0})
xe = 2K (1c)

∑

e∈δ(S)

xe ≥ 2rε(S) S ⊆ V+ (1d)

xe ≤ 1 e ∈ E \ δ({0}) (1e)

xe ∈ Z+ e ∈ E . (1f)

Constraints (1b) require that each customer is visited exactly once by some vehicle,
whereas (1c) states that K vehicles must leave and enter at the depot. Constraints (1d)
are the capacity inequalities, which enforce that enough vehicles are assigned to any
subset of customers.

A similar model has been used for the deterministic VRP with customer demands
di , i ∈ V+ where rε(S) in (1d) is replaced with the minimum number of vehicles r0(S)

required to serve the customers in the set S. Calculating this quantity exactly requires
solving the stronglyNP-hard bin-packing problem. Fortunately, for the deterministic
VRP, the easily computed lower bound k(S) := �d(S)/b� yields a valid formulation,
and the resulting cuts have been shown empirically to be effective. A key challenge
for the CCVRP is to determine how to compute a lower bound for rε(S) that is at least
sufficient to provide a valid formulation, and that is as close to rε(S) as possible in
order to yield strong inequalities. When the formulation (1) was studied in [25], they
proposed to use the value

τ I
ε (S) =

⌈(
d(S) + Φ−1(1 − ε)

√
σ 2(S)

)
/b

⌉
, (2)

as an approximation of rε(S). This is a valid lower bound when demands are inde-
pendent normal, but is not necessarily valid in other cases. In (2), Φ−1 is the inverse
of the cumulative density function of the standard normal distribution. The next sub-
section is devoted to deriving valid lower bounds on rε(S) that are strong but cheap to
compute.

2.2 Vehicle requirements in the capacity inequalities

We now discuss how to obtain kε(S) ≤ rε(S), such that formulation (1) is still valid
for the CCVRP if we replace rε(S) with kε(S). We refer to such lower bounds on the
minimum vehicle requirements as valid lower bounds. We begin with a simple valid
lower bound, kε(S), defined as:
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kε(S) =
{
1, if P{D(S) ≤ b} ≥ 1 − ε

2, otherwise.

which just states that at least two vehicles are needed to serve the set of customers S
if the probability that the sum of customer demands in the set S exceeding a single
vehicle’s capacity is too high.

Theorem 1 kε(S) is a valid lower bound for rε(S).

Proof Let Fr be the set of x ∈ {0, 1}E that satisfy (1), and Fk be the set of x ∈ {0, 1}E
that satisfy (1) with rε(S) in (1d) replaced by kε(S). It is immediate that rε(S) ≥ kε(S),
so Fr ⊆ Fk . Hence, it remains to show Fr ⊇ Fk .

Suppose, for the sake of contradiction, that there exists an integral solution x̂ ∈
Fk \ Fr . As these sets only differ in the constraints (1d), this implies there exists
S′ ⊆ V+ such that

∑
e∈δ(S′) x̂e < 2rε(S′). Next, note that since kε(S) ≥ 1, constraints

(1d) using kε(S) in place of rε(S), together with (1b) and (1c) imply that x̂ defines
a set of K tours, each of which begins and ends at the depot, and which visit each
node exactly once. Let P1, P2, . . . , Pq be the set of disjoint simple paths defined by
x̂ which enter the set S′, visit one or more nodes in S′, then depart it. (Note that it is
possible that q > K as a tour may enter and leave the set S′ more than once.) Let St
be the set of nodes in S′ visited by path Pt , t = 1, 2, . . . , q, and observe that these
sets form a partition of S′, and

∑
e∈δ(St ) x̂e = 2 for each t . Now note that any edge

in δ(S′) is an edge in δ(St ) for some t and, likewise, any edge in δ(St ) for which
x̂e > 0 must be in δ(S′). So it holds that

∑
e∈δ(S′) x̂e = ∑q

t=1

∑
e∈δ(St ) x̂e = 2q.

Thus, 2rε(S′) >
∑

e∈δ(S′) x̂e = 2q and hence q < rε(S′). Therefore, there exists
j ∈ {1, 2, . . . , q} such that P{D(S j ) ≤ b} < 1 − ε, because otherwise, we can use
q vehicles to pick up demands from S and the minimum vehicle requirement rε(S)

would be no larger than q. However, since P{D(S j ) ≤ b} < 1 − ε, kε(S j ) = 2 by
definition and

∑
e∈δ(S j ) x̂e ≥ 2kε(S j ) = 4, which is a contradiction. 
�

Note that computing kε(S) only requires computing P{D(S) ≤ b}. Moreover, any
value that is between kε(S) and rε(S) yields a valid lower bound. To improve on kε(S),
given a random variable X , we use Qp(X) to denote the p-th quantile of X , that is,
Qp(X) = inf

{
α : P{X ≤ α} ≥ p

}
. 1 An improved lower bound on rε(S) can be

obtained using the following lemma.

Lemma 1 Let p := 1 − rε(S)ε. For all S ⊆ V+, we have rε(S) ≥ ⌈
Qp(D(S))/b

⌉
.

Proof First, note that if rε(S)ε ≥ 1, then Q1−rε (S)ε = −∞ and the result is trivial,
so we may assume rε(S)ε < 1. Since rε(S) is an integer, it suffices to show that
rε(S)b ≥ Qp(D(S)), which is equivalent to showingP{D(S) ≤ rε(S)b} ≥ 1−rε(S)ε.

By definition of rε(S), there is an assignment of the customers in S to rε(S) vehicles
such that the probability of each vehicle failing its capacity constraint is at most ε.
Let Sk be the customers in S assigned to vehicle k ∈ {1, 2, . . . , rε(S)}. It follows that
P{D(Sk) > b} ≤ ε for k = 1, 2, . . . , rε(S) and that

∑rε (S)
k=1 D(Sk) = D(S). Let Ek

1 Note that P{D(S) ≤ b} ≥ 1 − ε ⇐⇒ Q1−ε(D(S)) ≤ b
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be the event that D(Sk) > b for k = 1, 2, . . . , rε(S). For an event E , we denote its
complement Ec. Let A be the event that D(S) ≤ rε(S)b. Thus, we need to show that
P(A) ≥ 1 − rε(S)ε, given that P(Ek) ≤ ε for k = 1, 2, . . . , rε(S).

We next derive a connection between event A and events Ek for k = 1, 2, . . . , rε(S).
Since

∑rε (S)
k=1 D(Sk) = D(S), it follows that D(Sk) ≤ b for all k = 1, 2, . . . , rε(S)

implies that D(S) ≤ rε(S)b. In other words,
⋂rε (S)

k=1 Ec
k �⇒ A, fromwhich it follows

that
( ⋃rε (S)

k=1 Ek
)c �⇒ A. Therefore,

P(A) ≥ P

(( rε (S)⋃

k=1

Ek
)c

)
= 1 − P

( rε (S)⋃

k=1

Ek
) ≥ 1 −

rε (S)∑

k=1

P(Ek) ≥ 1 − rε(S)ε

where the second inequality follows from the union bound and the final inequality
follows since P(Ek) ≤ ε for k = 1, 2, . . . , rε(S). 
�

The lower bound given by Lemma 1 cannot be directly used because its calculation
uses the value of rε(S) itself. However, one can use Lemma 1 to derive a computable
lower bound. For S ⊆ V+, define a(S, 1) = 1 and for k = 2, . . . , K define

a(S, k) := min
{
k,

⌈
Q1−(k−1)ε(D(S))/b

⌉}
.

Using a(S, k) we obtain the following valid lower bound:

ρε(S) = max
{
a(S, k) : k = 1, 2, . . . , K

}
.

Theorem 2 For all S ⊆ V+, kε(S) ≤ ρε(S) ≤ rε(S).

Proof Given S ⊆ V+, we first argue that kε(S) ≤ ρε(S). By definition, ρε(S) ≥
a(S, 2). We, next argue that a(S, 2) ≥ kε(S) by considering two cases. If P{D(S) ≤
b} ≥ 1 − ε, then kε(S) = 1. Since a(S, 2) is a positive integer, it follows trivially in
this case that a(S, 2) ≥ 1 = kε(S). Thus, suppose P{D(S) ≤ b} < 1 − ε. It follows
that Q1−ε(D(S)) > b. Thus, Q1−ε(D(S))/b > 1 and �Q1−ε(D(S))/b� ≥ 2. Hence,

a(S, 2) = min{2, �Q1−ε

(
D(S)

)
/b�} ≥ 2 = kε(S), by definition of kε(S) because

P{D(S) ≤ b} < 1 − ε.
Wenowshow that for any k,a(S, k) is a lower boundon rε(S). Indeed, this is trivially

true if rε(S) ≥ k or if k = 1. Otherwise, rε(S) ≤ k−1, in which case Lemma 1 shows
that rε(S) ≥ �Qp(D(S))/b�, where p = 1 − rε(S)ε. Then a(S, k) ≤ rε(S) since
Qp(D(S)) is nondecreasing in p. Therefore, the maximum of these lower bounds
over k = 1, . . . , K is also a lower bound. 
�

We next discuss how alternative valid lower bounds can be obtained in the special
case when the customer demands are joint normally distributed.
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2.3 Joint normal random demands

In this section we assume customer demands follow a joint normal distribution with
covariance matrix Σ � 0. In this case, if S ⊆ V+ denotes the set of customers visited
by a route, and yS is the binary vector having ySi = 1, i ∈ S and ySi = 0, i ∈ V+ \ S,
then the route is chance-constraint feasible if and only if yS satisfies the following
constraint:

d�y + κ(ε)

√

y�Σy ≤ b (3)

where κ(ε) := Φ−1(1 − ε). In the robust capacitated VRP studied in [21], a route
visiting customer set S is said to be robust feasible with respect to uncertainty setA(ε)

if yS satisfies the following robust constraint:

α�y ≤ b ∀α ∈ A(ε), (4)

where A(ε) is a tractable convex set. It is well-known (e.g., [5]) that, provided ε ≤
0.5, an individual joint-chance constraint of the form (3) is equivalent to the robust
constraint (4) with A(ε) = {q = Uv : ‖v‖ ≤ κ(ε)} and UUT = Σ .

In [21], the following bound on the number of vehicles required to serve a given
subset of customers S was derived for the robust capacitated VRP.

Theorem 3 (Proposition 3 of [21]) Let S ⊆ V+. The number of vehicles required to
serve the set of customers S with robust feasible routes with respect to uncertainty set
A(ε) is at least

⌈
max

{
α�yS : α ∈ A(ε)

}
/b

⌉
.

Therefore, we define

τ J
ε (S) :=

⌈(
d�yS + κ(ε)

√

(yS)�ΣyS
)
/b

⌉
,

and since d�yS + κ(ε)
√

(yS)�ΣyS = max
{
α�yS : α ∈ A(ε)

}
it follows from

Theorem 3 that, if the demands follow a joint normal distribution with mean vector d
and covariance matrix Σ and ε ≤ 0.5, then

ρε(S) ≤ τ J
ε (S) ≤ rε(S), ∀S ⊆ V+.

We note that when demands follow an independent normal distribution, then τ J
ε (S) =

τ I
ε (S), so this result generalizes the bound from [25].

3 Dantzig–Wolfe formulation and branch-and-cut-and-price

Set partitioning formulations for routing problems are based on enumerating ele-
mentary routes or relaxations of them. We start by describing such an approach
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for the deterministic VRP. For that case, an elementary route is a closed walk
v0, v1, . . . , vk, vk+1 = v0, for some k ≥ 1 such that (i) v0 = 0, vi ∈ V+,∀i = 1, . . . , k
and {vi−1vi } ∈ E,∀i = 1, . . . , k + 1; (ii) vi �= v j ,∀0 < i < j < k + 1 and (iii)
d�y ≤ b, where yv := ∑k

i=1 1{v=vi } is the number of times v appears in the route
and d is the vector of deterministic customer demands.

LetQ be the set of elementary routes and λ j ∈ {0, 1} represent if elementary route
j is used. Let qej := ∑k

i=0 1{e={vivi+1}}, that is, the number of times edge e appears in
route j . By using the relationship xe = ∑

j∈Q qejλ j , ∀e ∈ E, we obtain from (1) a
set-partitioning based formulation for the deterministic VRP [19]:

min
λ

∑

j∈Q

∑

e∈E
�eq

e
jλ j (5a)

s.t.
∑

j∈Q

∑

e∈δ({i})
qejλ j = 2 i ∈ V+ (5b)

∑

j∈Q

∑

e∈δ({0})
qejλ j = 2K (5c)

∑

j∈Q

∑

e∈δ(S)

qejλ j ≥ 2r0(S) S ⊆ V+ (5d)

∑

j∈Q
qejλ j ≤ 1 e ∈ E \ δ({0}) (5e)

λ j ∈ {0, 1} j ∈ Q. (5f)

In order to use (5) in a BCP approach it must be possible to solve the pricing
subproblem of λ variables efficiently. The pricing subproblem consists of finding
elementary routes of minimum reduced cost, which is strongly NP-hard. In [19]
condition (ii) was relaxed, leading to what is called a q-route [9]. Pricing q-routes is
stillNP-hard due to the knapsack-type condition (iii), but it can be solved in pseudo-
polynomial time [9] if the demands are integer. We note that more complex column-
generation schemes have also been proposed (see for instance [2]), strengthening (5)
by forbidding some (or all) cycles in q-routes. Our approach can be adapted to those
cases, but for simplicity we choose to only present it based on q-routes.

To adapt (5) for the CCVRP, all we need to do is replace r0(S) in (5d) by rε(S)

or any of its valid lower bounds derived in Sect. 2 and consider Q as the set of
chance-constraint feasible q-routes (CCq-routes), where a CCq-route is a closed
walk satisfying (i) and replacing condition (iii) by

P{D�y ≤ b} ≥ 1 − ε (6)

We note that chance-constraint feasible routes are CCq-routes satisfying (ii).
Unfortunately, in contrast to the deterministic VRP, the pricing of CCq-routes is

strongly NP-hard, even in two different special cases on the distribution of random
demands: a scenario model and independent normal.
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Theorem 4 Suppose the distribution of demands is specified by S joint demand sce-
narios ds ∈ Z

n+, s = 1, . . . , S, where P{D = ds} = 1/S for s = 1, . . . , S. Then
finding the minimum cost CCq-route is strongly NP-hard.

Proof Let S := {1, . . . , S}. For any depot-round walk w [i.e., a walk satisfying (i)]
and its associated vector y ∈ Z

V+ representing the number of times v is visited in w,
we let S(w) := {

s ∈ S : y�ds ≤ b
}
. Then, (6) is equivalent to |S \ S(w)| ≤ εS. We

prove strong NP-hardness by a reduction from the strongly NP-hard Hamiltonian
cycle problem. Suppose we have a graphG = (V+∪{0}, E) and wewant to determine
if it has a Hamiltonian cycle.

Construct the following instance of the minimum cost CCq-route problem. The
graph is the same, with 0 as the depot. All edge costs are −1. Set b = 2n − 1. Let
S = n + 1 and pick ε > 0 such that ε/2 < 1

S < ε. Now construct one scenario sv per
vertex v ∈ V+ as follows: all vertices except v have demand 1, whereas vertex v has
demand n. Finally, we construct a scenario s′ with all vertices having demand b.

Now we show that any depot-round walk w is a CCq-route if and only if it is
elementary, that is, each vertex is visited at most once. Supposew is elementary. Then
it satisfies scenarios sv for every v ∈ V+. Therefore, S \ S(w) ⊆ {s′} and hence w is
a CCq-route.

Conversely, suppose that w is a CCq-route. If w consists of just 0, v1, 0, then it is
clearly elementary. So now let us consider the case whenw is a walk of k > 1 vertices.
Note thatw satisfies scenario sv if and only if v is visited at most once inw. Also, note
that since k > 1, w violates scenario s′ and hence it cannot violate any other scenario.
So w is elementary.

Therefore, finding a minimum cost CCq-route is equivalent to finding a minimum
cost elementary route and the graph has a Hamiltonian cycle if and only if there exists
an elementary route of cost −n. 
�
Theorem 5 Suppose the random demands are independent and normally distributed
random variables, with expected value di ∈ Z+ and variance σ 2

i ∈ Z+ for i ∈ V+.
Then finding the minimum cost CCq-route is strongly NP-hard.

Proof For a q-route, let yi represent the number of times customer i is visited on the
route. As it is a q-route, yi are nonnegative integers (not necessarily 0− 1). Thus, the
chance constraint can be represented by:

d�y + κ(ε)
(∑

i∈V+
σ 2
i y

2
i

)1/2 ≤ b. (7)

Then, the pricing problem is to find a minimum cost CCq-route that satisfies (7).
We show this problem is stronglyNP-hard, again by reduction from the Hamiltonian
cycle problem. Suppose we have a graphG = (V+∪{0}, E) and wewant to determine
if it has a Hamiltonian cycle.

Construct the following instance of the minimum cost CCq-route problem. The
graph is the same, with 0 as the depot. All edge costs are−1, di = 0 and σ 2

i = 1 for all
i ∈ V+, and choose ε and b such that b/κ(ε) = √

n. We consider the decision version
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of the problem in which we wish to decide if there exists a CCq-route having cost
less than or equal to −n. Given this data, the constraint (7) reduces to

∑
i∈V+ y2i ≤ n.

Suppose the graph has a Hamiltonian cycle. This defines a depot-round walk of cost
equal to−n, and because each node is visited exactly once, it holds that

∑
i∈V+ y2i = n,

and so it defines a CCq-route.
Conversely, suppose there exists a CCq-route having cost less than or equal to

−n. Let yi represent the number of times node i ∈ V+ is visited on the walk, so that∑
i∈V+ y2i ≤ n and also

∑
i∈V+ yi = n. We claim that this implies yi = 1, i ∈ V+,

and so the CCq-route defines a Hamiltonian cycle. Indeed, we argue that the unique
minimum of

∑
i∈V+ y2i over y satisfying

∑
i∈V+ yi = n and y ∈ Z

n+ is attained by
setting yi = 1 for all i ∈ V+, so that any other y satisfying

∑
i∈V+ yi = n violates

∑
i∈V+ y2i ≤ n. Consider any y ∈ Z

n+ satisfying
∑

i∈V+ yi = n but not having yi = 1
for all i . There are two nodes, say i and j , with yi = 0 and y j ≥ 2. We argue that
the solution with y′

i = 1 and y′
j = y j − 1 (and all other y′

k = yk) has
∑

k∈V+(y′
k)

2 <
∑

k∈V+ y2k . Indeed,
∑

k∈V+(y2k − (y′
k)

2) ≥ y2j − (y j − 1)2 − 1 = 2y j − 2 > 0. 
�
Theorem 5 also implies that pricing of q-routes is strongly NP-hard if the cus-

tomer demands are joint normally distributed. Using the relationship between chance
constraints with normal random demands and robust constraints discussed in Sect. 2.3,
this in turn implies that in the robust capacitated VRP model [21], pricing of q-routes
that are robust feasible with respect to an ellipsoidal uncertainty set is strongly NP-
hard. We note that a similar result was shown in [30], however they assume that the
uncertainty set is a finite set of integer points in a polyhedron, which can be seen as
the case when the uncertainty set is a bounded integral polyhedron.

To overcome the difficulty in pricing CCq-routes, we propose to further relax the
capacity constraints defining CCq-routes used in the set partitioning formulation. We
present two approaches for doing this: one that applies to any distribution for which
we can evaluate (6) and the other that uses distribution-specific arguments when the
demands are normally distributed.

3.1 Relaxed pricing

The key advantage of using q-routes instead of elementary routes in (5) is to enable
pricing via dynamic programming. The approach is valid since the set of q-routes
contains the set of elementary routes and, in any {0, 1} solution to (5), constraints
(5b) ensure that only elementary routes are chosen. We build upon that idea to further
relax constraint (6) so that any chance constraint feasible route is still feasible, while
making use of the constraints in (5) to ensure that in a {0, 1} solution, only chance
constraint feasible routes are chosen.

Since the original condition (iii) can be handled by dynamic programming, we
choose to relax the condition (6) in the definition of aCCq-route to a similar knapsack-
type constraint π�y ≤ bπ . To make sure that chance constraint feasible routes are
still feasible, we must have that

bπ ≥ b∗
π := max

{
π�y : P{D�y ≤ b} ≥ 1 − ε, yi ∈ {0, 1}, i ∈ V+

}
. (8)
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It is then clear that the following proposition holds.

Proposition 1 Let y be a binary vector satisfying (6). If (8) holds, then y satisfies:

π�y ≤ bπ . (9)

We call relaxed chance constraint feasible q-routes (rCCq-routes) the closedwalks
satisfying conditions (i) in the definition of elementary routes and replacing (iii) in
that definition by (9). For any integral and nonnegative choice of the π coefficients,
once b∗

π (or an upper bound) is determined, we can proceed with the pricing exactly
the same way as is done in the deterministic VRP, using (9) as the knapsack constraint.

In the deterministic VRP, the constraints (5b) impose that, in a {0, 1} solution to
(5) only elementary routes may have their corresponding variable equal to 1. Since
each q-route satisfies the capacity constraints, the constraints (5d) are not required
for validity of the formulation (5), and so a pure branch-and-price algorithm could
be applied. In contrast, even if a rCCq-route is an elementary route, it may not be a
chance constraint feasible route. The formulation thus requires the constraints (5d),
which impose that in a {0, 1} solution to (5) only chance constraint feasible routes
may have their corresponding variable equal to 1.

3.2 Calculation of relaxed pricing constraint

We now discuss the choice of the coefficients π and calculation of the value b∗
π used

in the relaxed pricing constraint (9). Any integer values of π can be used, but it is
natural to choose values that correlate with the size of the items, and so we use πi = di
(these may be scaled and rounded to obtain smaller integers). Calculating b∗

π requires
solving the chance-constrained knapsack problem (8). This can be a computationally
challenging problem, although it only needs to be solved once as a preprocessing step.
In addition, any upper bound on b∗

π that is computationally cheaper to compute can
be used.

When the demands assume a discrete distribution having finitely many demand
scenarios, problem (8) can be solved using specialized techniques [32]. With joint
normal random demands having mean vector d and covariance matrix Σ � 0, the
capacity chance constraint in (8) can be modeled as

d�y + κ(ε)

√

y�Σy ≤ b. (10)

which can be reformulated as a second-order cone constraint when ε ≤ 0.5. In this
case, (8) becomes a binary second-order cone programming program.

We next discuss a procedure for calculating a relaxation of (10) in the case of joint
normal random demands. Define η∗ as the optimal objective value of the following
semidefinite program

η∗ = max
η,p,Q

η s.t. diη ≤ pi , i ∈ V+ (11a)
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Σ = diag(p1, . . . , pn) + Q (11b)

Q � 0, (11c)

and derive the following constraint based on η∗

d�y + κ(ε)

√

η∗d�y ≤ b. (12)

Proposition 2 Let y be a binary vector satisfying (10). Then y satisfies (12).

Proof Let (η∗, p∗, Q∗) be an optimal solution of (11) and let P∗ be the diagonal
matrix having P∗

i i = p∗
i , i ∈ V+. It suffices to show that η∗d�y ≤ y�Σy. It follows

that y�Σy = y�P∗y + y�Q∗y ≥ y�P∗y, since Q∗ � 0. Since y is a binary vector,
y�P∗y = ∑

i∈V+ p∗
i y

2
i = (p∗)�y. Since p∗ is feasible to (11), p∗

i ≥ diη∗, ∀i ∈ V+.
Therefore, it follows that y�Σy ≥ (p∗)�y ≥ η∗d�y. 
�

Proposition 2 shows that (12) is a relaxation of (6). The relaxation (12) is less
computationally expensive to obtain as it only requires solving a semidefinite program.
However, (12) is not linear in terms of y. Nonetheless, observing that the left-hand-
side of (12) is a monotone increasing function of d�y, it is possible to represent this
constraint as

d�y ≤ b̂d(η
∗) (13)

where

b̂d(η
∗) =

(√
b + Iεη∗ − √

Iεη∗
)2
and Iε = (1

2
κ(ε)

)2
.

We conclude by noting that for independent normal random variables, the value of
η∗ has the closed-form solution η∗ = min{σ 2

i /di : i ∈ V+}.

3.3 Improved relaxed pricing for independent normal demands

When the random demands are independent and are normally distributed with mean
vector d ∈ Z

n+ and variance vector σ 2 ∈ Z
n+, an improved relaxation of the pricing

subproblem with the q-route relaxation can be solved by a dynamic program with a
larger state space. As in (7), if yi represents the number of times customer i ∈ V+
is visited in the q-route, then the chance constraint in the pricing subproblem has the

form: d�y + κ(ε)
√∑

i∈V+ σ 2
i y

2
i ≤ b. By using the fact that yi ≤ y2i for yi ∈ Z+, we

further relax this constraint as follows:

d�y + κ(ε)
(∑

i∈V+
σ 2
i yi

)1/2 ≤ b. (14)

Any q-route that satisfies (7) also satisfies (14), and thus if we enforce (14) in the
pricing subproblem, no chance-constraint feasible route is excluded.

Using (14), a dynamic program with pseudo-polynomial state space can be used to
solve the pricing problem, similar to [23], by considering d�y and

∑
i∈V+ σ 2

i yi as two
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different resources in the corresponding resource-constrained shortest path problem.
We briefly summarize the dynamic program as follows. We define the value function
V(m, s, v) to represent the minimum cost q-route that reaches node v, having visited
customers with total sum of means equal to m and total sum of variances equal to s.
We let c̄e be the cost for visiting edge e in the pricing subproblem [determined by
values of dual variables in (5b)–(5e)]. Then, the optimality equation of the dynamic
program is as follows

V(m, s, v) =
{

+∞, if m + κ(ε)
√
s > b,m < 0, or s < 0

min{V(m − di , s − σ 2
i , i) + c̄e : e = iv ∈ δ(v)}, otherwise,

with V(0, 0, 0) := 0.

4 Extension to distributionally robust chance constraint

We now consider an adaptation of the CCVRP model in which the distribution, P,
of customer demands is not assumed to be known. Instead, we use a distributionally
robust chance constraint (DRCC) [5,13,17,18,24] inwhichwe assume the distribution
is known to lie within a given ambiguity setP of possible distributions. An assignment
of a set S of customers to a vehicle is then considered to be feasible if it satisfies the
chance constraint for every distribution in P . Specifically, if we let yS be defined by
ySi = 1 if i ∈ S and yS = 0 otherwise, then a set S of customers may be assigned to
a vehicle only if yS satisfies the following DRCC:

inf
P∈P

{
P{D�y ≤ b}

}
≥ 1 − ε. (15)

The constraint (15) is often referred to as an “individual” DRCC as it involves only a
single inequality. A route that visits a set of customers S such that yS satisfies (15) is
called DR feasible. Thus, the distributionally robust CCVRP (DRCCVRP) is to find
a minimum length set of K DR feasible routes such that every customer is visited
exactly once.

To extend the edge-based formulation (1) to the DRCCVRP, we define, for a subset
of customers S, the distributionally robust minimum vehicle requirements rPε (S) to
be the minimum number of vehicles needed to serve S with DR feasible routes. Then
the edge-based formulation for the DRCCVRP is identical to (1), except that rPε (S)

are used in (1d).
Our goal is to leverage existing results on reformulations of distributionally robust

chance constraints. We make the following assumptions on the ambiguity set P .

A1. The ambiguity set P is non-empty.
A2. y = 0 satisfies (15).
A3. There exists a closed convex cone FP

ε such that the DRCC (15) is satisfied by
y ∈ R

n if and only if (y, b) ∈ FP
ε .

Assumptions A1 and A2 are mild technical requirements that avoid trivial cases.
The focus in the DRCC literature has been on deriving formulations of the form in
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Assumption A3 in which the set FP
ε is convex and tractable for a fixed b. However,

we make use of the observation that the reformulations derived in the literature often
also define convex cones over the variable space (y, b). For example, suppose P =
{P : EP(D) = μ,CovP(D) = Σ} where d ∈ R

n is the vector of known means and
Σ ∈ R

n×n is the known positive definite covariance matrix. In this case, the set FP
ε

is of the form:

FP
ε = {(y, b) ∈ R

n+1 : d�y + κ(ε)

√

y�Σy ≤ b} (16)

where κ(ε) = √
(1 − ε)/ε [5,17]. Calafiore and El Ghaoui [5] present several other

examples of definitions for the setP which yield a formulation having a form identical
or similar to (16). A general framework for defining ambiguity sets based on projection
from a higher-dimensional set is provided in [22], which inmany cases lead to tractable
formulations in which FP

ε is defined as a projection from a higher-dimensional cone.
One ambiguity set that does not in general satisfy Assumption A3 is the set defined
based on φ-divergence from a reference distribution studied by Jiang and Guan [24].
However, in this case, Jiang and Guan show that the associated DRCC problem can be
reformulated as a standard chance-constrained problem on the reference distribution,
with a perturbed risk level. Thus, when using such an ambiguity set, the results from
the previous sections can be applied directly by using the perturbed risk level. Further
examples of DRCC reformulations can be found in [6,7,35,37].

4.1 Vehicle requirements in the capacity inequalities

As in Sect. 2.2, we derive a computable lower bound on the vehicle requirements
rPε (S). The main idea is that when the DRCC can be represented as in Assumption
A3, the DRCC is equivalent to a robust linear constraint, and hence the bound used in
[21] for the robustVRPcanbe applied.Wedefine the following function gε : Rn → R:

gε(y) = min{u : (y, u) ∈ FP
ε }.

Under Assumption A3, the DRCC (15) is satisfied if and only if gε(y) ≤ b.

Theorem 6 Suppose P satisfies Assumptions A1-A3. Then, for all S ⊆ V+, we have

rPε (S) ≥ ⌈
gε(y

S)/b
⌉

where yS is the binary vector having ySi = 1, i ∈ S and ySi = 0, i ∈ V+ \ S.

Proof We first observe that because FP
ε is a closed convex cone, the function gε is

positively homogeneous and convex. In addition gε is a proper convex function. Indeed
P is nonempty by A1, and hence using A3, for any y ∈ R

n and some fixed P
′ ∈ P ,
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gε(y) = min

{

u : inf
P∈P

{
P{D�y ≤ u}

}
≥ 1 − ε

}

≥ min
{
u : P′{D�y ≤ u} ≥ 1 − ε

}
= QP

′
(1 − ε) > −∞.

In addition, A2 implies that gε(0) < +∞. Let g∗
ε be the conjugate function of gε .

As gε is positively homogeneous, we have g∗
ε (α) = 0 if α ∈ Aε and g∗

ε (α) = +∞
otherwise, where Aε = {α ∈ R

n : α�y ≤ gε(y) ∀y ∈ R
n}. Then, as gε is a proper

convex function, conjugate duality implies gε(y) = max{α�y : α ∈ Aε}. But since
the DRCC (15) is equivalent to gε(y) ≤ b, this implies the DRCC is in turn equivalent
to the robust constraint α�y ≤ b ∀α ∈ Aε . Then, we apply Theorem 3 (Proposition
3 of [21]) to conclude that

rPε (S) ≥ ⌈
max{α�yS : α ∈ Aε}/b

⌉ = ⌈
gε(y

S)/b
⌉
.


�
Evaluating gε(yS) for a fixed set S ⊆ V+ in general requires solving the convex

program min{u : (yS, u) ∈ FP
ε }. However, as yS is fixed, this problem may be

significantly simpler than a problem in which the constraints (y, u) ∈ FP
ε are used in

a formulation where y are decision variables. For example, in the case of a DRCC of
the form (16) or similar, evaluating gε(yS) reduces to evaluating the left-hand side of
(16).

4.2 Dantzig–Wolfe formulation and relaxed pricing

The development of theDantzig–Wolfe formulation follows closely that of Sect. 3. The
only difference is that instead of usingCCq-routes, we now use distributionally robust
chance constraint feasible q routes (DRq-routes), where a DRq-route is a closedwalk
satisfying (i) v0 = 0, vi ∈ V+,∀i = 1, . . . , k and {vi−1vi } ∈ E,∀i = 1, . . . , k + 1;
and (15) with yv := ∑k

i=1 1{v=vi } as the number of times v appears in the route.
As in Sect. 3, we further relax the pricing problem to allow routes which violate

(15), but instead satisfy a knapsack constraint of the form π�y ≤ b, where π is a
given integral vector, e.g., π = d. Thus, for π ∈ Z

n+, we define

bPπ := max
{
π�y : inf

P∈P
P{D�y ≤ b} ≥ 1 − ε, yi ∈ {0, 1}, i ∈ V+

}
.

By construction, relaxed pricingmay be accomplished by replacing the constraint (15)
with the constraint π�y ≤ bPπ .

Under Assumption A3, calculating bPπ amounts to solving

max
{
π�y : (y, b) ∈ FP

ε , yi ∈ {0, 1}, i ∈ V+
}
.

The difficulty of this problem depends on the structure of the set FP
ε , but again it is

solved just once as a pre-processing step of the algorithm. When FP
ε has the form
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(16) with κ(ε) > 0, the problem can be formulated as a binary second-order cone
programming problem. Also in this case, we may follow the development of Sect. 3.2
to obtain the relaxed constraint

d�y + κ(ε)

√

η∗d�y ≤ b. (17)

where η∗ is calculated by solving the semidefinite program (11).

5 Computational study

In this section we describe results from a computational study using the methods
developed in the previous sections to solve CCVRP. We describe details of our imple-
mentation, including a heuristic for generating primal feasible solutions, in Sect. 5.2.
Section 5.1 describes our test instances, and Sect. 5.4 presents the computational
results and their analysis.

InAppendix 1we present results of an experiment comparing the solutions obtained
from the CCVRP model to those obtained from a recourse model of VRPSD. These
results indicate that, when evaluated in the recourse model, the CCVRP model yields
solutions that are on average only about 1% more costly than those of the recourse
model, whereas the solutions of the recourse model may have high probability of
vehicle capacity violation.

5.1 Test instances

We test our methods on CCVRP instances created by adapting the deterministic VRP
instances available at http://vrp.atd-lab.inf.puc-rio.br/. Ten benchmark deterministic
instances having 32–55 vertices were chosen from this library. For each deterministic
instance we created six different CCVRP instances, corresponding to three choices
for the distribution (independent normal, joint normal, and scenario) and two cases for
the level of variance in the distribution (low and high). The scenario distribution with
high variance is based on sampling from a model of random demands that includes
the possibility that customers are “no shows” (i.e., have zero demand) with positive
probability. For this model of random demands, exactly evaluating the probability that
a vehicle’s capacity is exceeded is computationally challenging, motivating the use
of a sample average scenario approximation. The graph and edge lengths for each
CCVRP instance are used directly from the corresponding deterministic instance. We
use ε = 0.05 in all of our test instances. The number of vehicles, K , used for an
instance was usually increased slightly from the deterministic instance (and more
for the instances with high variances) as the chance constraint effectively reduces the
capacity of an individual vehicle compared to the deterministic case. In such cases, we
change the name of the original deterministic instance to reflect the increase in number
of vehicles. Details of how the distributions of customer demands were generated in
each of the three distribution cases are given in Appendix 2.
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5.2 Implementation details

Our BCP implementation is based on the code of [19]. We refer the reader to [19] for
details of the BCP implementation in general, and focus our discussion on differences
in our implementation from that. As suggested in [19], we branch on sets S such that
2 < x∗(δ(S)) < 4, giving preference to sets that minimize |x∗(δ(S)) − 2.7|/d(S)

where x∗ is the solution to the LP relaxation. However, we disabled strong branching,
since we found it to be too time-consuming in our test instances. In addition, the code
in [19] automatically determines if branch-and-cut or BCP should be used to solve a
particular instance and also what length of cycles should be eliminated from q-routes
in the pricing problem of BCP. We did not use that feature since one of our goals was
to test the performance of BCP against branch-and-cut. We instead choose in advance
whether to use branch-and-cut or BCP and, in the latter case, we chose to eliminate
3-cycles from the rCCq-routes in the pricing problem.

5.3 Primal heuristic

We developed a heuristic for obtaining primal solutions to CCVRP. The heuristic
adapts and extends Clarke and Wright’s (CW) heuristic [10] for the deterministic
VRP. The idea behind this method is that if a route visiting customers v1, v2, . . . , vk is
merged with another route visiting customers w1, w2, . . . , wl to obtain a larger route
that visits all those k + l customers in that same order, the total savings from this
merger can be easily calculated. For example, if the resulting route visits customers
v1, v2, . . . , vk, w1, w2, . . . , wl , the total savings is �0vk + �0w1 − �vkw1 . The CW
heuristic starts with n simple routes, which go from the depot to a customer and go
straight back to the depot. At each iteration, it looks at all the possible pairs of routes,
and then merges the pair that yields a feasible route with the maximum savings. The
algorithm terminates once exactly K routes are obtained.

A direct adaptation of this heuristic from the deterministic VRP to CCVRP is
straightforward. The only change that is needed is that when considering merging two
routes, feasibility of the chance constraint must be checked. We also introduce several
enhancements. First, we use the linear programming (LP) relaxation solution at the
root node to obtain an improved set of starting routes. After solving the LP relaxation,
we perform a graph search to find all connected components, where two nodes are con-
nected if the edge variable value is greater than a threshold. We use a threshold of 0.8,
which results in a relatively large number of smaller connected components, which
are then used to form starting routes. Second, we use a look-ahead strategy to make
decisions that are less greedy. In particular, we use the following process for choosing
which routes to merge in each step. For each possible pair of routes, we tentatively
merge the routes and then run the basic CW heuristic until completion. We choose to
merge the pair of routes which yields the best solution after the CW heuristic. This
process is repeated until the number of routes reaches K , or until there are no pairs of
routes that can be feasibly merged (in the latter case, the heuristic fails to find a solu-
tion). Finally, for each route, we check if swapping the order of any three consecutive
customers in the route would yield a shorter route, and update the route if so.
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In Appendix 3 we present detailed computational results investigating the effects of
our enhancements to the CWheuristic. The basic CWheuristic finds a feasible solution
in only 70% of our CCVRP test instances, whereas the enhanced version nearly always
finds a feasible solution. Using the look-ahead procedure (with orwithout initialization
based on the LP relaxation solution) nearly always yields a feasible solution, and
the average quality of the solution is significantly better than that obtained without
the look-ahead procedure. However, when the look-ahead procedure is used without
initialization by the LP relaxation, it is very time-consuming. Combining the look-
ahead procedure with the initialization based on the LP relaxation yields solutions of
similar quality, and reduces the average heuristic time to 5.4, 12.1 and 70.9 s on the
independent normal, joint normal, and scenario distribution instances, respectively
(from 167.1, 254.8, and 1604.2 s, respectively).

5.4 Results

We tested five solution methods for the instances with independent normal random
demands. Three branch-and-cut (BC) methods based on formulation (1) were tested,
using valid lower bounds kε(S), ρε(S) and τ J

ε (S) for rε(S), named BC , BCρ , BCτ ,
respectively. Two branch-and-cut-and-price (BCP) methods based on formulation (5)
were tested, one using the relaxed pricing strategy proposed in Sect. 3.2 (denoted
BCPr ) and theother using the improved relaxedpricingdiscussed inSect. 3.3 (denoted
BCPi ). For the relaxed pricing in BCPr , we use η∗ = min{σ 2

i /di : i ∈ V+} in (13).
Both BCP methods use τ J

ε (S) as the bound on rε(S) in the capacity inequalities.
The same methods were tested for the instances with joint normal random demands,
except for BCPi , which only applies for instances with independent normal random
demands. In the BCPr method, the value η∗ for use in (13) is calculated by solving the
semidefinite program (11) using SeDuMi 1.3 [34]. For the instances with a scenario
model of randomdemands, the two applicable branch-and-cutmethods (BC and BCρ)
and the one applicable branch-and-price method (BCPr ) were tested. For BCPr ,
ρε(S) was used as the bound on rε(S) in the capacity inequalities, and relaxed pricing
was done using the method in Sect. 3.1, with bπ computed by solving the basic “big-
M” integer programming equivalent to (8) [32], solved with GuRoBi 5.6.2.

All experiments were run on a Dell R510 machine with 128G memory, and two
2.66GX5650XeonChips, having12 cores each.Our implementation is serial soweuse
only one core. A time limit of 7200s was imposed. When solving the preprocessing
problem (8) for the scenario instances, a time limit of 2000s was imposed on the
preprocessing time. In case the preprocessing problem is terminated due to the time
limit, the best upper bound obtained on the optimal value is used for bπ in (9). In all
cases, the preprocessing time is included in the reported solution time.

Figures 1, 2 and 3 show the aggregate results of themethods for the 20 instances hav-
ing independent normal, joint normal, and scenario distributions, respectively. These
figures present results similarly to performance profiles [15]. The x-axis in these plots
is broken into two intervals. The units in the left interval are seconds, and a point (x, y)
that has x in the left-interval represents that y instances were solved in at most x sec-
onds by the corresponding algorithm. For instances not solved within the time limit,

123

Author's personal copy



T. Dinh et al.

BC
BCρ
BCτ
BCP r
BCP i

1 10 100 1000 7200 10% 20%

1

5

10

15

20

Fig. 1 Summary of results for instances with independent normal distribution
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Fig. 2 Summary of results for instances with joint normal distribution

we recorded the final optimality gap, calculated as UB−LB
U B , whereUB and LB are the

upper and lower bounds, respectively, obtained by the method on that instance within
the time limit. The units in the right interval of the x-axis is percentage optimality gap,
and a point (x, y) with x in the right interval then represents that the method achieved
final optimality gap of at most x in y test instances. Note that the left interval of the
x-axis (for times) uses a log-scale and the right-interval (for percentage gaps) uses a
linear scale. In addition, note that the heuristic proposed in Sect. 5.2 may fail to find a
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Fig. 3 Summary of results for instances with scenario distribution

feasible solution if it cannot reduce the number of vehicles to the desired value. In that
case (and if the branch-and-bound search did not find a feasible solution), we declare
that instance to have a final gap of 100%. This is the reason why some of the curves
shown in the figures never reach the 20 instance mark.

The figures show that the improved valid lower bounds on rε(S) have a very sig-
nificant impact in all instances. The formulation BC , which uses kε(S) is clearly the
weakest of all. Interestingly, for instanceswith normally distributed demands, BCτ and
BCρ have similar results, although BCτ has amore clear advantage in the independent
normal case. For that reason, we consider that BCτ is the best branch-and-cut formu-
lation, when applicable, but also find that the more general BCρ also performs well.

We next compare the BCP methods based on (5) to the BC methods based on (1).
We find that for easier instances, the best BC methods perform better than the BCP
methods, in that they are able to solve many instances more quickly. However, for
more difficult instances, the better bounds provided by (5) are more beneficial. Indeed,
although the BCP curves start below the BC curves, the BCP curves eventually exceed
the BC curve, indicating that using BCP enables solving some instances within the
time limit that could not be solved by just BC, and also that the final optimality gaps
on the unsolved instances are smaller when using BCP. This behavior is consistent
with other BCP approaches, see, e.g., [19]. Finally, note that in the independent normal
case, BCPi outperforms BCPr , and hence the extra time spent pricing with the better
relaxation appears to be worth it.

Tables 1, 2 and 3 show the detailed statistics for the independent normal, joint
normal, and scenario demand instances, respectively. For brevity, we present only
statistics for the best BC and BCP approaches, as concluded from Figs. 1, 2 and 3.
The columns of those tables are as follows. Inst. gives the instance name, where in
the instance name, the last character indicates if it is a low (L) or high (H) variance
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Table 1 Detailed computational results for instances with independent normal distribution

Inst. BCτ BCPi

UB G/T RG RT UB G/T RG RT

A-n32-k5-L 801 1 s 0.9% 0s 801 15 s 0.0% 15s

A-n34-k6-L 789 4 s 1.5% 0s 789 11 s 0.0% 11s

A-n36-k5-L 835 363 s 4.8% 0s 835 809 s 2.3% 18s

A-n37-k5-L 687 15 s 3.2% 1s 687 96 s 0.8% 19s

B-n39-k5-L 563 20 s 1.1% 0s 563 1302 s 1.4% 27s

A-n44-k7-L 971 3495 s 4.6% 1s 971 120 s 0.4% 13s

A-n45-k7-L 981 119 s 4.5% 0s 981 246 s 1.2% 17s

P-n50-k12-L 741 8.9% 8.9% 1s 734 298 s 0.4% 12s

P-n51-k12-L 783 8.6% 8.6% 1s 777 399 s 0.8% 10s

A-n55-k10-L 1132 4.3% 5.2% 1s 1132 142 s 0.4% 36s

A-n32-k5-H 868 52 s 7.0% 0s 880 5.0% 5.0% 34s

A-n34-k6-H 831 21 s 5.5% 0s 831 417 s 1.2% 28s

A-n36-k6-H 875 1460 s 5.2% 0s 875 2548 s 2.8% 43s

A-n37-k5-H 711 21 s 5.2% 1s 711 608 s 1.8% 62s

B-n39-k6-H 586 1 s 0.4% 0s 586 186 s 0.4% 70s

A-n44-k7-H 1025 9.3% 9.3% 0s 1022 1.0% 1.6% 45s

A-n45-k7-H 1024 3838 s 7.6% 0s 1050 4.0% 4.0% 71s

P-n50-k13-H 813 14.6% 14.6% 1s 782 4176 s 1.0% 30s

P-n51-k12-H – 100.0% 100.0% 1s 837 3.3% 3.3% 35s

A-n55-k11-H 1206 8.3% 8.3% 1s 1188 448 s 0.3% 144 s

instance and the number following -k indicates the number of vehicles used. For
each method (BC or BCP), column UB shows the best upper bound found at the
end of the execution. A dash represents that no feasible solution was found. Column
G/T gives the total time (in seconds) it took to solve the corresponding instance. If
the instance was not solved within the time limit of 7200s, then the number in that
column represents the final optimality gap (in %) at that time. Finally, columns RG,
RT show, respectively, the gap (in %) obtained at the root node and the time it took to
solve that node [note thatRT does not include the time spent solving the preprocessing
problems (11) and (8)]. The detailed statistics are highlighted in bold if the instance
was solved to optimality with the corresponding method. In Appendix 4 we present
some additional statistics that were omitted due to space constraints, including the
number of branch-and-bound nodes, and the number of columns and cuts generated.

We find that the detailed experiments corroborate our previous conclusions, though
it can be seen from the tables that even in some larger instances, the branch-and-cut
method still outperforms branch-cut-and-price. We also see that the time spent solving
the root node using BCPi on the independent normal instances is significantly larger
than the BCP methods on the other instance classes, indicating that the improved
pricing of Sect. 3.3 is indeed significantly more time-consuming. On the other hand,
we also observe that BCPi yields significantly smaller root gaps.
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Table 2 Detailed computational results for instances with joint normal distribution

Inst. BCτ BCPr

UB G/T RG RT UB G/T RG RT

A-n32-k5-L 802 2 s 1.6% 0s 802 14 s 1.3% 2s

A-n34-k6-L 789 8 s 1.5% 0s 789 10 s 0.0% 1s

A-n36-k5-L 838 727 s 5.2% 0s 838 3589 s 3.8% 2s

A-n37-k5-L 701 37 s 5.1% 1s 701 535 s 4.1% 3s

B-n39-k5-L 563 79 s 1.1% 0s 563 1073 s 2.0% 3s

A-n44-k7-L 998 7.3% 7.3% 0s 982 5585 s 2.4% 2s

A-n45-k7-L 989 666 s 5.6% 1s 989 630 s 2.7% 2s

P-n50-k12-L 752 10.5% 10.5% 2s 745 4.0% 4.0% 1s

P-n51-k12-L 787 9.3% 9.3% 1s 784 3.7% 3.7% 1s

A-n55-k11-L 1158 6.1% 6.1% 1s 1144 2666 s 2.1% 2s

A-n32-k5-H 870 333 s 7.7% 0s 870 2787 s 7.1% 1s

A-n34-k6-H 832 42 s 5.9% 0s 832 425 s 3.5% 1s

A-n36-k6-H 884 5.2% 8.2% 0s 892 7.0% 7.0% 2s

A-n37-k5-H 711 49 s 5.5% 1s 711 640 s 5.3% 3s

B-n39-k6-H 591 5 s 1.3% 0s 591 202 s 2.3% 3s

A-n44-k7-H 1028 9.9% 9.9% 1s 1024 5.5% 5.5% 2s

A-n45-k8-H 1061 7.0% 10.2% 0s 1063 6.6% 6.6% 2s

P-n50-k13-H 794 13.1% 13.1% 1s 806 8.5% 8.5% 1s

P-n51-k12-H – 100.0% 100.0% 1s 966 19.7% 19.7% 1s

A-n55-k11-H 1223 10.6% 10.6% 1s 1238 8.2% 8.3% 2s

We also conducted some experiments on the extension of our approach to solve dis-
tributionally robust counterparts. We used the form (16) for the setFP

ε , and hence our
method for solving a CCVRP with joint normal distribution could be directly applied.
Instances were created by using the sample mean and sample covariance matrix of the
scenario distribution instances, and using those as d and Σ in (16). We summarize
the results here; more detailed results are presented in Appendix 5. As expected, we
find that the distributionally robust formulation yields more conservative solutions. In
particular, many fewer customers could be included on each route, and hence the num-
ber of vehicles needed to be increased significantly in order obtain feasible instances.
Using the increased number of vehicles, we found that the distributionally robust solu-
tion had an objective value on average 8.2% higher than its non-distributionally robust
counterpart. In addition, we found the distributionally robust instances to be signifi-
cantly more difficult to solve with our proposed approaches. Of the 20 test instances,
19 of the scenario instances were solved within the two hour time limit using one of
the methods, whereas only six of the distributionally robust counterparts were solved.
Thus, while the distributionally robust formulation offers an advantage in terms of
robustness to error in the distribution, this comes at a potentially high cost in terms
of conservatism of the solutions, and yields instances that are more difficult to solve
with our proposed methodologies.
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Table 3 Detailed computational results for instances with scenario distribution

Inst. BCρ BCPr

UB G/T RG RT UB G/T RG RT

A-n32-k5-L 802 9 s 1.9% 0s 802 86 s 1.3% 2s

A-n34-k6-L 789 37 s 1.5% 0s 789 352 s 0.0% 1s

A-n36-k5-L 838 1379 s 5.3% 0s 838 6490 s 3.8% 3s

A-n37-k5-L 687 83 s 3.2% 1s 687 155 s 2.4% 3s

B-n39-k5-L 561 43 s 0.7% 0s 561 1477 s 1.6% 5s

A-n44-k7-L 980 5.5% 5.5% 1s 971 2909 s 1.5% 2s

A-n45-k7-L 981 1866 s 5.0% 0s 981 1650 s 1.9% 2s

P-n50-k12-L 768 12.3% 12.3% 2s 764 6.6% 6.6% 2s

P-n51-k12-L 791 9.7% 9.7% 1s 785 3.9% 3.9% 1s

A-n55-k11-L 1146 5.1% 5.1% 1s 1162 4.2% 4.2% 3s

A-n32-k6-H 892 30 s 6.2% 0s 892 396 s 5.9% 1s

A-n34-k6-H 848 240 s 7.7% 0s 896 9.9% 9.9% 2s

A-n36-k6-H 896 7.0% 9.7% 0s 898 7.5% 7.5% 2s

A-n37-k6-H 733 108 s 7.1% 0s 733 3046 s 6.4% 3s

B-n39-k6-H 606 38 s 3.3% 0s 606 2.8% 4.4% 4s

A-n44-k8-H 1088 11.5% 11.5% 1s 1094 9.3% 9.3% 2s

A-n45-k8-H 1047 5138 s 7.9% 0s 1060 6.2% 6.5% 2s

P-n50-k13-H 814 15.0% 15.0% 1s 828 11.9% 11.9% 1s

P-n51-k13-H 898 17.5% 17.5% 1s 841 7.2% 7.5% 1s

A-n55-k11-H 1290 14.9% 14.9% 1s 1314 14.4% 14.4% 3s

Finally, we comment on the time spent solving the preprocessing problems (11)
and (8) in the BCPr method for the joint normal and scenario instances, respectively.
For the joint normal instances, the average time spent solving the SDP (11) over
the 20 instances was 19.5 s, with the maximum time being 64.3 s. Solving the MIP
formulation of (8) for the scenario instances was significantly more time-consuming.
Five of the 20 instances were not solved to optimality within the 2000s time limit, and
the average solution time of the remaining 15 instances was 576.3 s.We note, however,
that our implementation used only the most basic MIP formulation from [32], and so
these preprocessing times could potentially be reduced substantially using specialized
methods from [32], and in the case of instances inwhich the preprocessing problemwas
terminated suboptimally, this may also lead to an improved bound on bπ for use in (9).

6 Conclusion

We propose branch-and-cut and branch-and-cut-and-price approaches for the CCVRP
and the DRCCVRP with very mild assumptions on the distribution of customer
demands. In particular, we allow for correlations between random customer demands,
a condition which has been often overlooked by previous works. The key challenges
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that were addressed were the derivation of strong, but easy to compute lower bounds
on the minimum number of vehicles required to serve a subset of customers and the
derivation of pseudo-polynomial time pricing routines. The latter challenge arises from
the strong NP-hardness of a generalization of the pricing for the deterministic VRP.

Our approach represents the first successful BCP approach for the CCVRP. The
formulations proposed are promising and can be used to solve instances with up to
55 vertices. Nonetheless, several improvements can still be made to the implementa-
tion, in particular of the pricing routines, as well as the investigation of further valid
inequalities for the problem. These remain the topic of further research.

Appendix 1: Comparison of the CCVRP with recourse models

We conducted one additional experiment to compare the solution obtained by the
CCVRP with the one obtained by a recourse model for VRPSD, where the assumed
recourse is that a return trip must be made to the depot whenever a vehicle’s capacity
is exceeded. This experiment was done for instances having independent normal cus-
tomer demands, since these are the only instances that can be solved for the recourse
model. For such instances, the optimal solution for the recourse-based model and for
the CCVRP were obtained, denoted as xr and xcc, respectively. Both solutions were
then compared according to two quantities: zr (x), the objective value of the recourse-
based two-stage stochastic program, and η(x), which represents the largest probability
that a vehicle will have its capacity violated. Note that by design, zr (xr ) ≤ zr (xcc) and
that η(xcc) ≤ 0.05—though it is possible that η(xr ) < η(xcc). The instances selected
for this experiment are smaller than those in the previous sections due to difficulty in
solving the recourse-based model for larger instances.

The results are presented in Table 4. We find that when evaluating the CCVRP
solution in the recourse model, the value zr (xcc) was, on average, only about 1%
more than the optimal value zr (xr ), and the largest increase was 3.4%. On the other
hand, while η(xcc)was always (by design) less than 0.05, η(xr )was greater than 0.15

Table 4 Comparison of
solutions from CCVRP and
recourse models for VRPSD

Inst. Var. xcc xr

η zr η zr

E-n13-k14 Low 0.017 277.6 0.500 271.4

E-n22-k4 Low 0.001 373.0 0.001 373.0

E-n22-k5 Low 0.048 402.9 0.076 399.2

P-n22-k2 Low 0.024 213.5 0.024 213.5

P-n22-k3 Low 0.031 238.6 0.064 237.3

E-n13-k14 High 0.040 291.2 0.083 281.6

E-n22-k4 High 0.041 375.5 0.041 375.5

E-n22-k5 High 0.036 426.4 0.237 414.2

P-n22-k2 High 0.010 215.2 0.010 215.2

P-n22-k3 High 0.007 240.4 0.169 239.7
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in three of the instances, and as high as 0.5, meaning that in the solution there was
a vehicle whose capacity would be exceeded on average 50% of the time. We thus
conclude that the CCVRP model tends to yield solutions that are high quality for the
recourse model, whereas the reverse is not true. In addition, the CCVRP model is not
dependent on a particular assumption of the recourse taken, and can be solved also
when customer demands are not independent.

Appendix 2: Instance generation details

Instances with independent normal random demands were generated by letting the
mean customer demand di be equal to the demand of the customer i in the deterministic
instance. Low variance instances were generated by choosing the standard deviations
σi uniformly at random in the interval [0.07∗di , 0.13∗di ]. For high variance instances,
σi was selected uniformly at random in the range [0.14 ∗ di , 0.26 ∗ di ].

Instances with joint normal distributions were generated by first choosing the
means and standard deviations using the same procedure as for the independent nor-
mal instances. To determine correlation between two customers i, j, i �= j , we first
let γi j = 1/(�i j ∗ U (0.4, 1.6)), where U (0.4, 1.6) is a number chosen uniformly
at random in [0.4, 1.6]. We then set the correlation between customers i �= j as
ρi j = 0.2γi j/(γ + γ ), where γ and γ are the largest and smallest values of γi j over
all i �= j . Correlations are determined in this way so that customers that are closer
together tend to have higher correlation, and the scaling ensures that all correlations
are significantly less than 1.0. The covariance between customers i and j is then set
as Σi j = ρi jσiσ j . This procedure successfully yielded a positive definite matrix in
each of our test instances.

Each of the scenario distribution consists of 200 equally likely scenarios. The low
variance instances were created by generating a sample of 200 scenarios from the
joint normal distribution used in the low variance joint normal instances. The high
variance instances were generated similarly, except that each customer i also had a
probability, pi , of having zero demand. These probability values were first generated
randomly in such a way that about half of the customers have pi = 0, and the rest
have pi between 0 and 0.4. Thus, to generate each scenario, the demands for all
customers were first generated according to the joint normal distribution. Then, for
each customer i , its demand in that scenario was set to zero with probability pi . This
distribution was used to provide a test with a distribution in which it is difficult to
exactly calculate P{D(S) ≤ b} for a subset of customers S, motivating the use of the
scenario approximation. For both of the high and low variance instances, the sampled
demands were rounded to the nearest integer.

Appendix 3: Computational results of primal heuristic variants

We tested the following four variants of the Clarke–Wright heuristic.

– CW: Basic Clarke-Wright heuristic.
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Table 5 Summary results for heuristic variants on 20 independent normal instances

CW CW+LA CW+LP CW+LP+LA

Avg. LP time (s) – – 36.3 36.9

Avg. heuristic time (s) <0.01 167.1 <0.01 5.4

Num success 15 19 15 20

% Above best UB 5.3 0.9 2.9 1.0

Table 6 Summary results for heuristic variants on 20 joint normal instances

CW CW+LA CW+LP CW+LP+LA

Avg. LP time (s) – – 2.0 2.2

Avg. heuristic time (s) <0.01 254.8 <0.01 12.1

Num success 15 19 14 20

% Above best UB 4.2 0.8 3.5 1.1

Table 7 Summary results for heuristic variants on 20 scenario instances

CW CW+LA CW+LP CW+LP+LA

Avg. LP time (s) – – 2.2 2.1

Avg. heuristic time (s) <0.01 1604.2 <0.01 70.9

Num success 12 20 10 20

% Above best UB 3.6 2.0 2.8 2.9

– CW+LA: Clarke-Wright heuristic adapted to use look-ahead procedure to select
routes to merge at each iteration.

– CW+LP: Clarke-Wright heuristic initialized with routes based on LP relaxation
solution.

– CW+LP+LA: Heuristic initialized with routes based on LP relaxation solution
and using the look-ahead procedure.

In these experiments, in the versions that initialize the heuristic based on the solution
of the LP relaxation, the LP relaxation solution that is used to form the initial routes
is the solution obtained after solving the root node of the BCP formulation (i.e., after
the initial column and cut generation phase is complete). For the independent normal
instances, the formulation based on the improved relaxation of the pricing subproblem
proposed in Sect. 3.3 is used. When using the CW+LP+LA heuristic to obtain an
initial feasible solution in the exact algorithms, the LP relaxation used to initialize the
heuristic is the one used in the algorithm, and hence may have different results than
those reported here.

Tables 5, 6, and 7 present summary results of the heuristics for the independent
normal, joint normal, and scenario instances, respectively. Each table reports summary
statistics over the 20 instances in that class, including the average time to solve the LP
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relaxation (relevant for the two versions that initialize based on the LP relaxation), the
average time to run the heuristic (‘Avg. heuristic time’), the number of instances for
which the heuristic found a feasible solution (‘Num success’), and the average percent
by which the solution found by the heuristic exceeded the best known objective value
for that instance (‘% Above best UB’), where this average is taken only over instances
for which the heuristic found a feasible solution. For these experiments a time limit of
2000s was imposed, and if a heuristic hit the time limit the best upper bound obtained
is returned, and 2000s is used as the heuristic time. The time limit was only reached
for the CW+LA variant on the scenario distribution instances, where the limit was
reached in 10 of the 20 instances. These results indicate that the methods based on
the look-ahead procedure are most consistent in terms of yielding feasible solutions,
and also yield the solutions of best quality. On the other hand, when initialized with
just an individual customer per route, the look-ahead procedure is significantly slower
than the alternatives. Initializing the look-ahead procedure with partial routes from the
LP relaxation solution significantly reduces the time of the heuristic, while yielding
solutions of similar quality.

Appendix 4: Detailed computational results

Wepresent the additional computational statistics thatwere omitted in Sect. 5. Tables 8,
9 and 10 are the corresponding versions ofTables 1, 2 and 3, respectively. For complete-
ness we repeat the original columns described in Sect. 5 and also present the number of
branch-and-bound nodes, number of columns, and number of cuts, respectively nBB,
nCols and nCuts. Column Alg. represents the variant of the exact algorithm that is
being reported. Instances marked with * are ones for which the algorithm failed to
find any upper bound and thus the branch-and-bound process is very ineffective, since
there is no pruning by bound.

Appendix 5: Results on distributionally robust test instances

Table 11 presents the detailed results for the distributionally robust (DR) experiments.
We performed experiments by using the scenario-based instances and then computing
the sample mean and sample covariance matrix, and using these as d and Σ in (16).
The number of vehicles was increased on these instances in order to obtain feasible
solutions to the DR version of the instance. Column ΔV represents the increase in
number of vehicles relative to the original number of vehicles used for the non-DR ver-
sion. With this new number of vehicles, we solved both the original scenario instance
(non-DR) and the DR version of the instance, both using ε = 0.05. For each instance
and each version (DR and non-DR), we report the result from the method that yield
the best performance, i.e., the method that gives the best value of feasible solution and,
in case of a tie, the one giving the lowest solution time. The best method is reported in
column Alg. as BC (the best branch-and-cut version for this type of instance) and/or
BCP (the best branch-cut-and-price version for this type of instance). The instances
marked with * are ones for which no method found a feasible solution within the time
limit. The statistics reported in Table 11 are from the best method of each instance and
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Table 8 Detailed computational results for instances with independent normal distribution

Inst. Alg UB T/LB RLB RT nBB nCols nCuts

A-n32-k5-L BCτ 801 1s 0.9% 0s 17 0 816

A-n34-k6-L BCτ 789 4s 1.5% 0s 7 0 753

A-n36-k5-L BCτ 835 363s 4.8% 0s 7807 0 219001

A-n37-k5-L BCτ 687 15s 3.2% 1s 362 0 13838

B-n39-k5-L BCτ 563 20s 1.1% 0s 567 0 7908

A-n44-k7-L BCτ 971 3495s 4.6% 1s 39110 0 2378515

A-n45-k7-L BCτ 981 119s 4.5% 0s 1629 0 77636

P-n50-k12-L BCτ 741 8.9% 8.9% 1s 71984 0 4606175

P-n51-k12-L BCτ 783 8.6% 8.6% 1s 73874 0 5020482

A-n55-k10-L BCτ 1132 4.3% 5.2% 1s 68604 0 2862531

A-n32-k5-H BCτ 868 52s 7% 0s 2043 0 40369

A-n34-k6-H BCτ 831 21s 5.5% 0s 525 0 13820

A-n36-k6-H BCτ 875 1460s 5.2% 0s 35241 0 638734

A-n37-k5-H BCτ 711 21s 5.2% 1s 527 0 16411

B-n39-k6-H BCτ 586 1s 0.4% 0s 20 0 226

A-n44-k7-H BCτ 1025 9.3% 9.3% 0s 74347 0 3168830

A-n45-k7-H BCτ 1024 3838s 7.6% 0s 59003 0 1759560

P-n50-k13-H BCτ 813 14.6% 14.6% 1s 84433 0 2948606

P-n51-k12-H BCτ * 100% 100% 1s * * *

A-n55-k11-H BCτ 1206 8.3% 8.3% 1s 72175 0 2366689

A-n32-k5-L BCPi 801 15s 0% 15s 1 922 27

A-n34-k6-L BCPi 789 11s 0% 11s 1 805 9

A-n36-k5-L BCPi 835 809s 2.3% 18s 169 86235 601

A-n37-k5-L BCPi 687 96s 0.8% 19s 15 10867 95

B-n39-k5-L BCPi 563 1302s 1.4% 27s 157 114161 451

A-n44-k7-L BCPi 971 120s 0.4% 13s 32 20941 211

A-n45-k7-L BCPi 981 246s 1.2% 17s 51 31371 561

P-n50-k12-L BCPi 734 298s 0.4% 12s 99 25057 322

P-n51-k12-L BCPi 777 399s 0.8% 10s 128 39586 456

A-n55-k10-L BCPi 1132 142s 0.4% 36s 13 6548 80

A-n32-k5-H BCPi 880 5% 5% 34s 739 294096 1724

A-n34-k6-H BCPi 831 417s 1.2% 28s 59 16800 138

A-n36-k6-H BCPi 875 2548s 2.8% 43s 229 119307 482

A-n37-k5-H BCPi 711 608s 1.8% 62s 55 30985 119

B-n39-k6-H BCPi 586 186s 0.4% 70s 9 7159 27

A-n44-k7-H BCPi 1022 1% 1.6% 45s 944 412176 1303

A-n45-k7-H BCPi 1050 4% 4% 71s 434 267123 2058

P-n50-k13-H BCPi 782 4176s 1% 30s 417 93467 761

P-n51-k12-H BCPi 837 3.3% 3.3% 35s 542 154857 1192

A-n55-k11-H BCPi 1188 448s 0.3% 144s 9 4231 18
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Table 9 Detailed computational results for instances with joint normal distribution

Inst. Alg UB T/LB RLB RT nBB nCols nCuts

A-n32-k5-L BCτ 802 2s 1.6% 0s 13 0 779

A-n34-k6-L BCτ 789 8s 1.5% 0s 11 0 771

A-n36-k5-L BCτ 838 727s 5.2% 0s 18301 0 483273

A-n37-k5-L BCτ 701 37s 5.1% 1s 1005 0 39181

B-n39-k5-L BCτ 563 79s 1.1% 0s 1864 0 22818

A-n44-k7-L BCτ 998 7.3% 7.3% 0s 78293 0 4003706

A-n45-k7-L BCτ 989 666s 5.6% 1s 8269 0 424746

P-n50-k12-L BCτ 752 10.5% 10.5% 2s 74199 0 4433517

P-n51-k12-L BCτ 787 9.3% 9.3% 1s 70651 0 5422971

A-n55-k11-L BCτ 1158 6.1% 6.1% 1s 63895 0 2964516

A-n32-k5-H BCτ 870 333s 7.7% 0s 11731 0 258617

A-n34-k6-H BCτ 832 42s 5.9% 0s 1622 0 36128

A-n36-k6-H BCτ 884 5.2% 8.2% 0s 201806 0 3859244

A-n37-k5-H BCτ 711 49s 5.5% 1s 1119 0 47012

B-n39-k6-H BCτ 591 5s 1.3% 0s 132 0 1321

A-n44-k7-H BCτ 1028 9.9% 9.9% 1s 35441 0 1483627

A-n45-k8-H BCτ 1061 7% 10.2% 0s 130570 0 4341782

P-n50-k13-H BCτ 794 13.1% 13.1% 1s 97290 0 4197331

P-n51-k12-H BCτ * 100% 100% 1s * * *

A-n55-k11-H BCτ 1223 10.6% 10.6% 1s 63927 0 2421776

A-n32-k5-L BCPr 802 14s 1.3% 2s 7 4047 129

A-n34-k6-L BCPr 789 10s 0% 1s 1 746 33

A-n36-k5-L BCPr 838 3589s 3.8% 2s 5456 3357789 29627

A-n37-k5-L BCPr 701 535s 4.1% 3s 699 599062 4730

B-n39-k5-L BCPr 563 1073s 2% 3s 840 959850 3148

A-n44-k7-L BCPr 982 5585s 2.4% 2s 10446 6404822 87793

A-n45-k7-L BCPr 989 630s 2.7% 2s 952 634651 9242

P-n50-k12-L BCPr 745 4% 4% 1s 27613 7247532 175550

P-n51-k12-L BCPr 784 3.7% 3.7% 1s 25136 7057212 163084

A-n55-k11-L BCPr 1144 2666s 2.1% 2s 4526 2336978 46667

A-n32-k5-H BCPr 870 2787s 7.1% 1s 6633 3175151 34189

A-n34-k6-H BCPr 832 425s 3.5% 1s 1209 562077 7278

A-n36-k6-H BCPr 892 7% 7% 2s 10422 7724248 56690

A-n37-k5-H BCPr 711 640s 5.3% 3s 891 713339 7013

B-n39-k6-H BCPr 591 202s 2.3% 3s 203 201457 994

A-n44-k7-H BCPr 1024 5.5% 5.5% 2s 12878 7130312 80444

A-n45-k8-H BCPr 1063 6.6% 6.6% 2s 11999 7957991 70145

P-n50-k13-H BCPr 806 8.5% 8.5% 1s 29008 6585216 138907

P-n51-k12-H BCPr 966 19.7% 19.7% 1s 14471 5851766 91281

A-n55-k11-H BCPr 1238 8.2% 8.3% 2s 11183 6817023 65949
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Table 10 Detailed computational results for instances with scenario distribution

Inst. Alg UB T/LB RLB RT nBB nCols nCuts

A-n32-k5-L BCρ 802 9s 1.9% 0s 13 0 982

A-n34-k6-L BCρ 789 37s 1.5% 0s 29 0 1414

A-n36-k5-L BCρ 838 1379s 5.3% 0s 27383 0 654817

A-n37-k5-L BCρ 687 83s 3.2% 1s 305 0 10376

B-n39-k5-L BCρ 561 43s 0.7% 0s 95 0 596

A-n44-k7-L BCρ 980 5.5% 5.5% 1s 78624 0 3780214

A-n45-k7-L BCρ 981 1866s 5% 0s 24598 0 1026909

P-n50-k12-L BCρ 768 12.3% 12.3% 2s 67102 0 2943878

P-n51-k12-L BCρ 791 9.7% 9.7% 1s 62688 0 4136873

A-n55-k11-L BCρ 1146 5.1% 5.1% 1s 60526 0 2847855

A-n32-k6-H BCρ 892 30s 6.2% 0s 331 0 6197

A-n34-k6-H BCρ 848 240s 7.7% 0s 6178 0 108308

A-n36-k6-H BCρ 896 7% 9.7% 0s 145862 0 2742440

A-n37-k6-H BCρ 733 108s 7.1% 0s 1948 0 46475

B-n39-k6-H BCρ 606 38s 3.3% 0s 273 0 2878

A-n44-k8-H BCρ 1088 11.5% 11.5% 1s 102212 0 2472508

A-n45-k8-H BCρ 1047 5138s 7.9% 0s 79607 0 2225023

P-n50-k13-H BCρ 814 15% 15% 1s 73178 0 3086540

P-n51-k13-H BCρ 898 17.5% 17.5% 1s 65032 0 1841886

A-n55-k11-H BCρ 1290 14.9% 14.9% 1s 66836 0 1433083

A-n32-k5-L BCPr 802 86s 1.3% 2s 5 2480 79

A-n34-k6-L BCPr 789 352s 0% 1s 1 801 29

A-n36-k5-L BCPr 838 6490s 3.8% 3s 7566 4819319 36543

A-n37-k5-L BCPr 687 155s 2.4% 3s 37 25915 368

B-n39-k5-L BCPr 561 1477s 1.6% 5s 268 255890 1384

A-n44-k7-L BCPr 971 2909s 1.5% 2s 1242 814222 9106

A-n45-k7-L BCPr 981 1650s 1.9% 2s 384 221366 3411

P-n50-k12-L BCPr 764 6.6% 6.6% 2s 13660 3599724 76763

P-n51-k12-L BCPr 785 3.9% 3.9% 1s 14845 4343387 82816

A-n55-k11-L BCPr 1162 4.2% 4.2% 3s 6202 3478612 35423

A-n32-k6-H BCPr 892 396s 5.9% 1s 603 302364 3398

A-n34-k6-H BCPr 896 9.9% 9.9% 2s 10746 5915779 56339

A-n36-k6-H BCPr 898 7.5% 7.5% 2s 10321 5623804 38677

A-n37-k6-H BCPr 733 3046s 6.4% 3s 3006 2410551 15751

B-n39-k6-H BCPr 606 2.8% 4.4% 4s 3514 4420928 16878

A-n44-k8-H BCPr 1094 9.3% 9.3% 2s 5807 3921842 26244

A-n45-k8-H BCPr 1060 6.2% 6.5% 2s 7493 4804653 44317

P-n50-k13-H BCPr 828 11.9% 11.9% 1s 15311 3842539 63425

P-n51-k13-H BCPr 841 7.2% 7.5% 1s 16165 4081040 67067

A-n55-k11-H BCPr 1314 14.4% 14.4% 3s 5074 3132875 29753
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Table 11 Computational results on distributionally robust test instances

Inst. ΔV Non-DR DR

UB T(s) Alg. UB T(s) Alg.

A-n32-k9-H 3 1010 57 BC 1237 7200 BC

A-n34-k10-H 4 997 121 BC 1176 7200 BCP

A-n36-k10-H 4 989 270 BC 1183 7200 BC

A-n37-k9-H 3 781 80 BC 930 7200 BC/BCP

A-n44-k12-H 4 1206 7200 BC 1510 7200 BCP

A-n45-k13-H 5 1215 411 BC 1520 7200 BC

A-n55-k20-H 9 1481 170 BC 100000 7200 *

B-n39-k9-H 3 697 56 BC 911 7200 BCP

P-n50-k20-H 7 915 4544 BCP 100000 7200 *

P-n51-k20-H 7 959 2664 BCP 100000 7200 *

A-n32-k9-L 4 968 10 BC 1010 12 BC

A-n34-k10-L 4 952 69 BC 1008 33 BC

A-n36-k10-L 5 954 60 BC 998 170 BC

A-n37-k9-L 4 757 117 BC 797 43 BC

A-n44-k12-L 5 1160 2482 BCP 1196 7200 BCP

A-n45-k13-L 6 1182 135 BC 1226 241 BC

A-n55-k20-L 9 1457 350 BC 100000 7200 *

B-n39-k9-L 4 685 11 BC 697 12 BC

P-n50-k15-L 3 777 3696 BCP 843 7200 BCP

P-n51-k15-L 3 807 2293 BCP 889 7200 BC

version. We report the solution time T and the value of the best feasible solution UB
and when using a time limit of 7200s.
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18. Erdoğan, E., Iyengar, G.: Ambiguous chance constrained problems and robust optimization. Math.
Program. 107(1), 37–61 (2005)

19. Fukasawa, R., Longo, H., Lysgaard, J., de Aragão, M.P., Reis, M., Uchoa, E., Werneck, R.F.: Robust
branch-and-cut-and-price for the capacitated vehicle routing problem.Math. Program. 106(3), 491–511
(2006)

20. Gauvin, C., Desaulniers, G., Gendreau, M.: A branch-cut-and-price algorithm for the vehicle routing
problem with stochastic demands. Comput. Oper. Res. 50, 141–153 (2014)

21. Gounaris, C.E., Wiesemann, W., Floudas, C.A.: The robust capacitated vehicle routing problem under
demand uncertainty. Oper. Res. 61(3), 677–693 (2013)

22. Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: A distributionally robust perspective on
uncertainty quantification and chance constrained programming.Math. Program. 151(1), 35–62 (2015)

23. Irnich, S., Desaulniers, G.: Shortest path problems with resource constraints. In: Desaulniers, G.,
Desrosiers, J., Solomon, M. (eds.) Column Gener. Springer, Berlin (2005)

24. Jiang, R., Guan, Y.: Data-driven chance constrained stochastic program. Math. Program. 58, 291–327
(2016)

25. Laporte, G., Louveaux, F., Mercure, H.: Models and exact solutions for a class of stochastic location-
routing problems. Eur. J. Oper. Res. 39(1), 71–78 (1989)

26. Laporte, G., Louveaux, F., Mercure, H.: The vehicle routing problem with stochastic travel times.
Trans. Sci. 26(3), 161–170 (1992)

27. Laporte, G., Louveaux, F.V., VanHamme, L.: An integer L-shaped algorithm for the capacitated vehicle
routing problem with stochastic demands. Oper. Res. 50(3), 415–423 (2002)

28. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic con-
straints. SIAM J. Optim. 19, 674–699 (2008)

29. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E.: Improved branch-cut-and-price for capacitated vehicle
routing. In: Integer Programming andCombinatorialOptimization.LectureNotes inComputer Science,
vol. 8494, pp. 393–403. Springer (2014)

30. Pessoa, A.A., Pugliese, L.D.P., Guerriero, F., Poss, M.: Robust constrained shortest path problems
under budgeted uncertainty. http://www.optimization-online.org/DB_FILE/2014/10/4601.pdf (2014)

31. Secomandi, N., Margot, F.: Reoptimization approaches for the vehicle-routing problemwith stochastic
demands. Oper. Res. 57(1), 214–230 (2009)

32. Song, Y., Luedtke, J.R., Küçükyavuz, S.: Chance-constrained binary packing problems. INFORMS J.
Comput. 26, 735–747 (2014)

33. Stewart, W.R., Golden, B.L.: Stochastic vehicle routing: a comprehensive approach. Eur. J. Oper. Res.
14(4), 371–385 (1983)

34. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim.
Methods Softw. 11(1–4), 625–653 (1999)

35. Yang, W., Xu, H.: Distributionally robust chance constraints for non-linear uncertainties. Math. Pro-
gram. 155(1), 231–265 (2014)

123

Author's personal copy

http://www.optimization-online.org/DB_FILE/2014/10/4601.pdf


T. Dinh et al.

36. Yang, W.H., Mathur, K., Ballou, R.H.: Stochastic vehicle routing problem with restocking. Trans. Sci.
34(1), 99–112 (2000)

37. Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order
moment information. Math. Program. 137, 167–198 (2011)

123

Author's personal copy


	Exact algorithms for the chance-constrained vehicle routing problem
	Abstract
	1 Introduction
	2 Problem definition and an edge-based formulation
	2.1 Edge-based formulation
	2.2 Vehicle requirements in the capacity inequalities
	2.3 Joint normal random demands

	3 Dantzig–Wolfe formulation and branch-and-cut-and-price
	3.1 Relaxed pricing
	3.2 Calculation of relaxed pricing constraint
	3.3 Improved relaxed pricing for independent normal demands

	4 Extension to distributionally robust chance constraint
	4.1 Vehicle requirements in the capacity inequalities
	4.2 Dantzig–Wolfe formulation and relaxed pricing

	5 Computational study
	5.1 Test instances
	5.2 Implementation details
	5.3 Primal heuristic
	5.4 Results

	6 Conclusion
	Appendix 1: Comparison of the CCVRP with recourse models
	Appendix 2: Instance generation details
	Appendix 3: Computational results of primal heuristic variants
	Appendix 4: Detailed computational results
	Appendix 5: Results on distributionally robust test instances
	References




