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Abstract. We present a new primal-dual algorithm for computing the value of the Lagrangian
dual of a stochastic mixed-integer program (SMIP) formed by relaxing its nonanticipativity con-
straints. This dual is widely used in decomposition methods for the solution of SMIPs. The algo-
rithm relies on the well-known progressive hedging method, but unlike previous progressive hedging
approaches for SMIP, our algorithm can be shown to converge to the optimal Lagrangian dual value.
The key improvement in the new algorithm is an inner loop of optimized linearization steps, similar
to those taken in the classical Frank–Wolfe method. Numerical results demonstrate that our new
algorithm empirically outperforms the standard implementation of progressive hedging for obtaining
bounds in SMIP.
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1. Introduction. Stochastic programming with recourse provides a framework
for modeling problems where decisions are made in stages. Between stages, some
uncertainty in the problem parameters is unveiled, and decisions in subsequent stages
may depend on the outcome of this uncertainty. When some decisions are modeled
using discrete variables, the problem is known as a stochastic mixed-integer program-
ming (SMIP) problem. The ability to simultaneously model uncertainty and discrete
decisions makes SMIP a powerful modeling paradigm for applications. Important
applications employing SMIP models include unit commitment and hydro-thermal
generation scheduling [26, 36], military operations [34], vaccination planning [30, 37],
air traffic flow management [4], forestry management and forest fire response [6, 28],
and supply chain and logistics planning [20, 22]. However, the combination of un-
certainty and discreteness makes this class of problems extremely challenging from a
computational perspective. In this paper, we present a new and effective algorithm
for computing lower bounds that arise from a Lagrangian-relaxation approach.
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The mathematical statement of a two-stage SMIP is

(1) ζSMIP := min
x

{
c>x+Q(x) : x ∈ X

}
,

where the vector c ∈ Rnx is known, and X is a mixed-integer linear set consisting
of linear constraints and integer restrictions on some components of x. The function
Q : Rnx 7→ R is the expected recourse value

Q(x) := Eξ
[
min
y

{
q(ξ)>y : W (ξ)y = h(ξ)− T (ξ)x, y ∈ Y (ξ)

}]
.

We assume that the random variable ξ is taken from a discrete distribution indexed
by the finite set S, consisting of the realizations, ξ1, . . . , ξ|S|, corresponding to strictly
positive probabilities of realization, p1, . . . , p|S|. When ξ is not discrete, a finite sce-
nario approximation can be obtained via Monte Carlo sampling [19, 24] or other
methods [11, 10]. Each realization ξs of ξ is called a scenario and encodes the real-
izations observed for each of the random elements (q(ξs), h(ξs),W (ξs), T (ξs), Y (ξs)).
For notational brevity, we refer to this collection of random elements respectively as
(qs, hs,Ws, Ts, Ys). For each s ∈ S, the set Ys ⊂ Rny is a mixed-integer set containing
both linear constraints and integrality constraints on a subset of the variables ys.

The problem (1) may be reformulated as a deterministic equivalent

(2) ζSMIP = min
x,y

{
c>x+

∑
s∈S

psq
>
s ys : (x, ys) ∈ Ks ∀s ∈ S

}
,

where Ks := {(x, ys) : Wsys = hs − Tsx, x ∈ X, ys ∈ Ys}. Problem (2) has a special
structure that can be algorithmically exploited by decomposition methods. To induce
a decomposable structure, scenario-dependent copies xs for each s ∈ S of the first-
stage variable x are introduced to create the following reformulation of (2):
(3)

ζSMIP = min
x,y,z

{∑
s∈S

ps(c
>xs + q>s ys) : (xs, ys) ∈ Ks, xs = z ∀s ∈ S, z ∈ Rnx

}
.

The constraints xs = z, s ∈ S, enforce nonanticipativity for first-stage decisions;
the first-stage decisions xs must be the same (z) for each scenario s ∈ S. Applying
Lagrangian relaxation to the nonanticipativity constraints in problem (3) yields the
nonanticipative Lagrangian dual function

(4) φ(µ) := min
x,y,z

{ ∑
s∈S

[
ps(c

>xs + q>s ys) + µ>s (xs − z)
]

:
(xs, ys) ∈ Ks ∀s ∈ S, z ∈ Rnx

}
,

where µ = (µ1, . . . , µ|S|) ∈
∏
s∈S Rnx is the vector of multipliers associated with the

relaxed constraints xs = z, s ∈ S. By setting ωs := 1
ps
µs, (4) may be rewritten as

(5) φ(ω) := min
x,y,z

{∑
s∈S

psLs(xs, ys, z, ωs) : (xs, ys) ∈ Ks ∀s ∈ S, z ∈ Rnx

}
,

where
Ls(xs, ys, z, ωs) := c>xs + q>s ys + ω>s (xs − z).

Since z is unconstrained in the optimization problem in the definition (5), in order for
the Lagrangian function φ(ω) to be bounded from below, we require as a condition
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of dual feasibility that
∑
s∈S psωs = 0. Under this assumption, the z term vanishes,

and the Lagrangian dual function (5) decomposes into separable functions,

(6) φ(ω) =
∑
s∈S

psφs(ωs),

where for each s ∈ S,

(7) φs(ωs) := min
x,y

{
(c+ ωs)

>x+ q>s y : (x, y) ∈ Ks

}
.

The reformulation (6) is the basis for parallelizable approaches for computing dual
bounds that are used, for example, in the dual decomposition methods developed
in [9, 23].

For any choice of ω = (ω1, . . . , ω|S|), it is well known that the value of the
Lagrangian dual function provides a lower bound on the optimal solution to (1):
φ(ω) ≤ ζSMIP . The problem of finding the best such lower bound is the Lagrangian
dual problem:

(8) ζLD := sup
ω

{
φ(ω) :

∑
s∈S

psωs = 0

}
.

The primary contribution of this work is a new and effective method for solving (8),
thus enabling a practical and efficient computation of high-quality lower bounds for
ζSMIP .

The function φ(ω) is a piecewise-affine concave function, and many methods
are known for maximizing such functions. These methods include the subgradient
method [35], the augmented Lagrangian (AL) method [16, 31], and the alternating
direction method of multipliers (ADMM) [14, 12, 8]. The subgradient method has
mainly theoretical significance, since it is difficult to develop reliable and efficient step-
size rules for the dual variables ω (see, e.g., section 7.1.1 of [33]). As iterative primal-
dual approaches, methods based on the AL method or ADMM are more effective in
practice. However, in the context of SMIP, both methods require convexification of
the constraints Ks, s ∈ S, to have a meaningful theoretical support for convergence to
the best lower bound value ζLD. Furthermore, both methods require the solution of
additional mixed-integer linear programming (MILP) subproblems in order to recover
the Lagrangian lower bounds associated with the dual values, ω [15]. ADMM has a
more straightforward potential for decomposability and parallelization than the AL
method, and so in this work we develop a theoretically supported modification of a
method based on ADMM.

When specialized to the deterministic equivalent problem (2) in the context of
stochastic programming, ADMM is referred to as progressive hedging (PH) [32, 39].
When the sets Ks, s ∈ S, are convex, the limit points of the sequence of solution-
multiplier pairs

{
((xk, yk, zk), ωk)

}∞
k=1

generated by PH are saddle points of the de-
terministic equivalent problem (2), whenever such saddle points exist. When the
constraints (xs, ys) ∈ Ks, s ∈ S, enforce nontrivial mixed-integer restrictions, the set
Ks is not convex and PH becomes a heuristic approach with no guarantees of con-
vergence [21]. Nevertheless, some measure of success in practice has been observed
in [39] while applying PH to problems of the form (3). More recently, [15] showed
that valid Lagrangian lower bounds can be calculated from the iterates of the PH
algorithm when the sets Ks are not convex. However, their implementation of the
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algorithm does not offer any guarantee that the lower bounds will converge to the
optimal value ζLD. Moreover, additional computational effort, in solving additional
MILP subproblems, must be expended in order to compute the lower bound. Our
contribution is to extend the PH-based approach in [15], creating an algorithm whose
lower bound values converge to ζLD in theory and for which lower bound calculations
do not require additional computational effort. Computational results in section 4
demonstrate that the new method outperforms the existing PH-based method, in
terms of both quality of bound and efficiency of computation.

To motivate our approach, we first consider the application of PH to the following
well-known primal characterization of ζLD:

(9) ζLD = min
x,y,z

{∑
s∈S

ps(c
>xs + q>s ys) : (xs, ys) ∈ conv(Ks), xs = z ∀s ∈ S

}
,

where conv(Ks) denotes the convex hull of Ks for each s ∈ S. (See, for example,
Theorem 6.2 of [25].)

The sequence of Lagrangian bounds {φ(ωk)} generated by the application of PH
to (9) is known to be convergent. Thus, the value of the Lagrangian dual problem
(ζLD) may, in theory, be computed by applying PH to (9). However, in practice, an
explicit polyhedral description of conv(Ks), s ∈ S, is generally not available, thus
raising the issue of implementability.

The absence of such an explicit description motivates an application of a solu-
tion approach to the PH primal update step that iteratively constructs an improved
inner approximation of each conv(Ks), s ∈ S. For this purpose, we apply a solution
approach to the PH primal update problem that is based on the Frank–Wolfe (FW)
method [13]. Our approach has the additional benefit of providing Lagrangian bounds
at no additional computational cost.

One simple, theoretically supported integration of an FW-like method and PH is
realized by having the PH primal updates computed using a method called the simpli-
cial decomposition method (SDM) [17, 38]. SDM is an extension of the FW method
that makes use of progressively improving inner approximations to each set conv(Ks),
s ∈ S. The finite optimal convergence of each application of SDM follows directly
from the polyhedral structure conv(Ks) and the (practically reasonable) assumption
that conv(Ks) is bounded for each s ∈ S.

For computing improvements in the Lagrangian bound efficiently, convergence
of SDM to the optimal solution of the subproblem is too costly and not necessary.
We thus develop a modified integration whose theoretically supported convergence
analysis is based not on the optimal convergence of SDM, but rather on its ability to
adequately extend the inner approximations of each conv(Ks), s ∈ S.

The main contribution of this paper is the development, convergence analysis, and
application of a new algorithm, called FW-PH, which is used to compute high-quality
Lagrangian bounds for SMIPs efficiently and with a high potential for parallelization.
FW-PH is efficient in that, under mild assumptions, each dual update and Lagrangian
bound computation may be obtained by solving, for each s ∈ S, just one MILP prob-
lem and one continuous convex quadratic problem. In contrast, each dual update of
PH requires the solution of a mixed-integer quadratic programming (MIQP) subprob-
lem for each s ∈ S, and each PH Lagrangian bound computation requires the solution
of one MILP subproblem for each s ∈ S. In our convergence analysis, conditions are
provided under which the sequence of Lagrangian bounds generated by FW-PH con-
verges to the optimal Lagrangian bound ζLD. To the best of our knowledge, the
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combination of PH and FW in a manner that is theoretically supported, computa-
tionally efficient, and parallelizable is new, in spite of the convergence analyses of
both PH and FW being well developed. We also perform an experimental assessment
of alternative heuristic strategies that can be employed in a straightforward manner
to recover feasible solutions for problem (3) from the solution obtained by FW-PH
for problem (9).

This paper is organized as follows. In section 2, we present the theoretical back-
ground of PH and a brief technical lemma regarding the inner approximations gener-
ated by SDM; this background is foundational to the proposed FW-PH method. In
section 3, we present the FW-PH method and a convergence analysis. We also present
in this section heuristic strategies that can be employed to generate primal feasible
first-stage solutions. The results of numerical experiments comparing the Lagrangian
bounds computed with PH and those with FW-PH are presented in section 4. We
also provide a comparison of the primal solutions obtained employing the heuristics
described. We conclude in section 5 with a discussion of the results obtained and with
suggested directions for further research.

2. Progressive hedging and Frank–Wolfe-based methods. The augmented
Lagrangian (AL) dual function based on the relaxation of the nonanticipativity con-
straints xs = z, s ∈ S, is

Lρ(x, y, z, ω) :=
∑
s∈S

psL
ρ
s(xs, ys, z, ωs),

where
Lρs(xs, ys, z, ωs) := c>xs + q>s ys + ω>s (xs − z) +

ρ

2
‖xs − z‖22

and ρ > 0 is a penalty parameter. By changing the feasible region, denoted here
by Ds, s ∈ S, the AL dual problem (i.e., the Lagrangian dual problem in which
the Lagrangian dual function is replaced by its augmented version) can be used in
a progressive hedging (PH) approach to solve either problem (3) or problem (9).
Pseudocode for the PH algorithm is given in Algorithm 1.

In Algorithm 1, kmax > 0 is the maximum number of iterations and ε > 0
parameterizes the convergence tolerance. The initialization of lines 3–8 provides an
initial target primal value z0 and dual values ω1

s , s ∈ S, for the main iterations k ≥ 1.
Also, an initial Lagrangian bound φ0 can be computed from this initialization.

For ε > 0, the Algorithm 1 termination criterion
√∑

s∈S ps ‖xks − zk−1‖
2
2 < ε

is motivated by the addition of the squared norms of the primal and dual residuals
associated with problem (9). These residuals, as developed in section 3.3 of [8] within
the more general context of ADMM, are measures of how close (xk, yk, zk) come
to satisfying the necessary and sufficient conditions of optimality for problem (9).
Hence, we enforce an adequate vanishing of primal and dual feasibility residuals, which
ultimately implies the vanishing of primal (and dual) objective value suboptimality [8].
In summing the squared norm primal residuals ps‖xks − zk‖22, s ∈ S, and the squared
norm dual residual ‖zk − zk−1‖22, we have

(10)
∑
s∈S

ps

[∥∥xks − zk∥∥22 +
∥∥zk − zk−1∥∥2

2

]
=
∑
s∈S

ps
∥∥xks − zk−1∥∥22 .

The equality in (10) follows since, for each s ∈ S, the cross term resulting from the
expansion of the squared norm ‖(xks − zk) + (zk− zk−1)‖22 vanishes; this is seen in the
equality

∑
s∈S ps(x

k
s − zk) = 0 due to the construction of zk.
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Algorithm 1 PH applied to problem (3) (Ds = Ks) or (9) (Ds = conv(Ks)).

1: Precondition:
∑
s∈S psω

0
s = 0

2: function PH(ω0, ρ, kmax, ε)
3: for s ∈ S do
4: (x0s, y

0
s) ∈ argminx,y

{
(c+ ω0

s)>x+ q>s y : (x, y) ∈ Ds

}
5: end for
6: φ0 ←

∑
s∈S ps

[
(c+ ω0

s)>x0s + q>s y
0
s

]
7: z0 ←

∑
s∈S psx

0
s

8: ω1
s ← ω0

s + ρ(x0s − z0) for all s ∈ S
9: for k = 1, . . . , kmax do

10: for s ∈ S do
11: φks ← minx,y

{
(c+ ωks )>x+ q>s y : (x, y) ∈ Ds

}
12: (xks , y

k
s ) ∈ argminx,y

{
Lρs(x, y, z

k−1, ωks ) : (x, y) ∈ Ds

}
13: end for
14: φk ←

∑
s∈S psφ

k
s

15: zk ←
∑
s∈S psx

k
s

16: if
√∑

s∈S ps ‖xks − zk−1‖
2
2 < ε then

17: return (xk, yk, zk, ωk, φk)
18: end if
19: ωk+1

s ← ωks + ρ(xks − zk) for all s ∈ S
20: end for
21: return (xkmax , ykmax , zkmax , ωkmax , φkmax)
22: end function

The line 11 subproblem of Algorithm 1 is an addition to the original PH algorithm.
Its purpose is to compute Lagrangian bounds (line 14) from the current dual solution
ωk [15]. Thus, the bulk of computational effort in Algorithm 1 applied to problem (3)
(the case with Ds = Ks) resides in computing solutions to the MILP (line 11) and
MIQP (line 12) subproblems. Note that line 11 (and line 14) may be omitted if the
corresponding Lagrangian bound for ωk is not desired.

2.1. Convergence of PH. The following proposition addresses the convergence
of PH applied to problem (9).

Proposition 2.1. Assume that problem (9) is feasible with conv(Ks) bounded
for each s ∈ S, and let Algorithm 1 be applied to problem (9) (so that Ds = conv(Ks)
for each s ∈ S) with tolerance ε = 0 for each k ≥ 1. Then, the limit limk→∞ ωk = ω∗

exists and, furthermore,
1. limk→∞

∑
s∈S ps(c

>xks + q>s y
k
s ) = ζLD,

2. limk→∞ φ(ωk) = ζLD,
3. limk→∞(xks − zk) = 0 for each s ∈ S,

and each limit point (((x∗s, y
∗
s )s∈S , z

∗) is an optimal solution for (9).

Proof. Since the constraint sets Ds = conv(Ks), s ∈ S, are bounded, and prob-
lem (9) is feasible, problem (9) has an optimal solution ((x∗s, y

∗
s )s∈S , z

∗) with optimal
value ζLD. The feasibility of problem (9), the linearity of its objective function, and
the bounded polyhedral structure of its constraint set Ds = conv(Ks), s ∈ S, imply
that the hypotheses for PH convergence to the optimal solution are met (See Theorem
5.1 of [32]). Therefore,

{
ωk
}

converges to some ω∗, limk→∞
∑
s∈S ps(c

>xks + q>s ys) =
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ζLD, limk→∞ φ(ωk) = ζLD, and limk→∞(xks − zk) = 0 for each s ∈ S all hold. The
boundedness of each Ds = conv(Ks), s ∈ S, furthermore implies the existence of limit
points ((x∗s, y

∗
s )s∈S , z

∗) of {((xks , yks )s∈S , z
k)}, which are optimal solutions for (9).

Note that the convergence in Proposition 2.1 applies to the continuous problem (9)
but not to the mixed-integer problem (3). In problem (3), the constraint sets Ks,
s ∈ S, are not convex, so there is no guarantee that Algorithm 1 will converge when
applied to (3). However, the application of PH to problem (9) requires, in line 12,
the optimization of the AL over the sets conv(Ks), s ∈ S, for which an explicit linear
description is unlikely to be known. In the next section, we demonstrate how to
circumvent this difficulty by constructing inner approximations of the polyhedral sets
conv(Ks), s ∈ S.

2.2. A Frank–Wolfe approach based on simplicial decomposition. To
use Algorithm 1 to solve (9) requires a method for solving the subproblem

(11) (xks , y
k
s ) ∈ argmin

x,y

{
Lρs(x, y, z

k−1, ωks ) : (x, y) ∈ conv(Ks)
}

appearing in line 12 of the algorithm. Although an explicit description of conv(Ks)
is not readily available, if we have a linear objective function, then we can replace
conv(Ks) with Ks (solving one MIP problem per scenario). This motivates the appli-
cation of an FW algorithm for solving (11), since the FW algorithm solves a sequence
of problems in which the nonlinear objective is linearized using a first-order approxi-
mation.

The simplicial decomposition method (SDM) is an extension of the FW method,
where the line searches of FW are replaced by searches over polyhedral inner approx-
imations. SDM can be applied to solve a feasible, bounded problem of the general
form

(12) ζFW := min
x
{f(x) : x ∈ D} ,

with nonempty compact convex set D and continuously differentiable convex function
f . Generically, given a current solution xt−1 and inner approximation Dt−1 ⊆ D,
iteration t of the SDM consists of solving

x̂ ∈ argmin
x

{
∇xf(xt−1)>x : x ∈ D

}
,

updating the inner approximation as Dt ← conv(Dt−1 ∪ {x̂}), and finally choosing

xt ∈ argmin
x

{
f(x) : x ∈ Dt

}
.

The algorithm terminates when the bound gap is small, specifically, when

Γt := −∇xf(xt−1)>(x̂− xt−1) ≤ τ,

where τ ≥ 0 is a given tolerance.
The application of SDM to solve problem (11), i.e., to minimize Lρs(x, y, z, ωs)

over (x, y) ∈ conv(Ks) for a given s ∈ S, is presented in Algorithm 2. Here, tmax
is the maximum number of iterations and τ > 0 is a convergence tolerance. Γt is
the bound gap used to measure closeness to optimality, and φs is used to compute
a Lagrangian bound as described in the next section. The inner approximation to
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Algorithm 2 SDM applied to problem (11).

1: Precondition: V 0
s ⊂ conv(Ks) and z =

∑
s∈S psx

0
s

2: function SDM(V 0
s , x0s, ωs, z, tmax, τ)

3: for t = 1, . . . , tmax do
4: ω̂ts ← ωs + ρ(xt−1s − z)
5: (x̂s, ŷs) ∈ argminx,y

{
(c+ ω̂ts)

>x+ q>s y : (x, y) ∈ V(conv(Ks))
}

6: if t = 1 then
7: φs ← (c+ ω̂ts)

>x̂s + q>s ŷs
8: end if
9: Γt ← −[(c+ ω̂ts)

>(x̂s − xt−1s ) + q>s (ŷs − yt−1s )]
10: V ts ← V t−1s ∪ {(x̂s, ŷs)}
11: (xts, y

t
s) ∈ argminx,y {Lρs(x, y, z, ωs) : (x, y) ∈ conv(V ts )}

12: if Γt ≤ τ then
13: return (xts, y

t
s, V

t
s , φs)

14: end if
15: end for
16: return (xtmax

s , ytmax
s , V tmax

s , φs)
17: end function

conv(Ks) at iteration t ≥ 1 takes the form conv(V ts ), where V ts is a finite set of points
with V ts ⊂ conv(Ks). The points added by Algorithm 2 to the initial set, V 0

s , to form
V ts are all in Ks: here V(conv(Ks)) is the set of extreme points of conv(Ks) and, of
course, V(conv(Ks)) ⊆ Ks.

Observe that

∇(x,y)L
ρ
s(x, y, z, ωs)|(x,y)=(xt−1

s ,yt−1
s ) =

[
c+ ωs + ρ(xt−1s − z)

qs

]
=

[
c+ ω̂s
qs

]
,

with ω̂s = ωs+ρ(xt−1s −z), and so the optimization at line 5 is minimizing the gradient
approximation to Lρs(x, y, z, ωs) at the point (xt−1s , yt−1s ). Since this is a linear ob-
jective function, optimization over V(conv(Ks)) can be accomplished by optimization
over Ks (see, e.g., section I.4, Theorem 6.3 of [25]). Hence line 5 requires a solution
of a single-scenario MILP.

The optimization at line 11 can be accomplished by expressing (x, y) as a convex

combination of the finite set of points, V ts , where the weights a ∈ R|V t
s | in the convex

combination are now also decision variables. That is, the line 11 problem is solved
with a solution to the following convex continuous quadratic subproblem:

(13) (xts, y
t
s, a) ∈ argmin

x,y,a

{
Lρs(x, y, z, ωs) : (x, y) =

∑
(x̂i,ŷi)∈V t

s
ai(x̂

i, ŷi),∑
i=1,...,|V t

s |
ai = 1, and ai ≥ 0 for i = 1, . . . , |V ts |

}
.

For implementational purposes, the x and y variables may be substituted out of
the objective of problem (13), leaving a as the only decision variable, with the only
constraints being nonnegativity of the a components and the requirement that they
sum to 1.

SDM is known to terminate finitely with an optimal solution when D is polyhedral
[17], so the primal update step line 12, Algorithm 1 with Ds = conv(Ks) could be
accomplished with SDM, resulting in an algorithm that converges to a solution to
problem (9). This solution, despite not being feasible for problem (3) in general (as it
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typically does not observe integrality requirements), gives the Lagrangian dual bound
ζLD. However, since each inner iteration of line 5, Algorithm 2 requires the solution of
a MILP, using tmax large enough to ensure SDM terminates optimally is not efficient
for our purpose of computing Lagrangian bounds. In the next section, we give an
adaptation of the algorithm that requires the solution of only one MILP subproblem
per scenario at each major iteration of the PH algorithm.

3. The FW-PH method. In order to make SDM efficient when used with PH
to solve problem (9), the minimization of the augmented Lagrangian dual problem
can be solved approximately. This insight can greatly reduce the number of MILP
subproblems solved at each inner iteration and forms the basis of our algorithm FW-
PH. Convergence of FW-PH relies on the following lemma, which states an important
expansion property of the inner approximations employed by SDM.

Lemma 3.1. For any scenario s ∈ S and iteration k ≥ 1, let Algorithm 2 be
applied to the minimization problem (11) for any tmax ≥ 2. For 1 ≤ t < tmax, if

(14) (xts, y
t
s) 6∈ argmin

x,y

{
Lρs(x, y, z

k−1, ωks ) : (x, y) ∈ conv(Ks)
}

holds, then conv(V t+1
s ) ⊃ conv(V ts ).

Proof. For s ∈ S and k ≥ 1 fixed, we know that by construction

(xts, y
t
s) ∈ argmin

x,y

{
Lsρ(x, y, z

k−1, ωks ) : (x, y) ∈ conv(V ts )
}

for t ≥ 1. Given the convexity of (x, y) 7→ Lsρ(x, y, z
k−1, ωks ) and the convexity of

conv(V ts ), the necessary and sufficient condition for optimality

(15) ∇(x,y)L
s
ρ(x

t
s, y

t
s, z

k−1, ωks )

[
x− xts
y − yts

]
≥ 0 for all (x, y) ∈ conv(V ts )

is satisfied. By assumption, condition (14) is satisfied, conv(Ks) is likewise convex,
and so the resulting nonsatisfaction of the necessary and sufficient condition of opti-
mality for the problem in (14) takes the form

(16) min
x,y

{
∇(x,y)L

s
ρ(x

t
s, y

t
s, z

k−1, ωks )

[
x− xts
y − yts

]
: (x, y) ∈ conv(Ks)

}
< 0.

In fact, during SDM iteration t + 1, an optimal solution (x̂s, ŷs) to the problem in
condition (16) is computed in line 5 of Algorithm 2. Therefore, by the satisfaction of
condition (15) and the optimality of (x̂s, ŷs) for the problem of condition (16), which
is also satisfied, we have (x̂s, ŷs) 6∈ conv(V ts ). By construction, V t+1

s ← V ts ∪{(x̂s, ŷs)},
so that conv(V t+1

s ) ⊃ conv(V ts ) must hold.

3.1. Convergence of FW-PH. The FW-PH algorithm is stated in pseudocode
form in Algorithm 3. Similar to Algorithm 1, the parameter ε is a convergence toler-
ance, and kmax is the maximum number of (outer) iterations. The parameter tmax is
the maximum number of (inner) SDM iterations in Algorithm 2.

The parameter α ∈ R affects the initial linearization point x̃s of the SDM method.
Any value α ∈ R may be used, but the use of x̃s = (1 − α)zk−1 + αxk−1s in line 6
is a crucial component in the efficiency of the FW-PH algorithm, as it enables the
computation of a valid dual bound, φk, at each iteration of FW-PH without the need
for additional MILP subproblem solutions. Specifically, we have the following result.
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Algorithm 3 FW-PH applied to problem (9).

1: function FW-PH((V 0
s )s∈S , (x0s, y

0
s)s∈S , ω0, ρ, α, ε, kmax, tmax)

2: z0 ←
∑
s∈S psx

0
s

3: ω1
s ← ω0

s + ρ(x0s − z0) for s ∈ S
4: for k = 1, . . . , kmax do
5: for s ∈ S do
6: x̃s ← (1− α)zk−1 + αxk−1s

7: [xks , y
k
s , V

k
s , φ

k
s ]← SDM(V k−1s , x̃s, ω

k
s , z

k−1, tmax, 0)
8: end for
9: φk ←

∑
s∈S psφ

k
s

10: zk ←
∑
s∈S psx

k
s

11: if
√∑

s∈S ps ‖xks − zk−1‖
2
2 < ε then

12: return ((xks , y
k
s )s∈S , z

k, ωk, φk)
13: end if
14: ωk+1

s ← ωks + ρ(xks − zk) for s ∈ S
15: end for
16: return

(
(xkmax
s , ykmax

s )s∈S , z
kmax), ωkmax , φkmax

)
17: end function

Proposition 3.2. Assume that the precondition
∑
s∈S psω

0
s = 0 holds for Algo-

rithm 3. At each iteration k ≥ 1 of Algorithm 3, the value, φk, calculated at line 9, is
the value of the Lagrangian dual function φ(·) evaluated at a Lagrangian dual feasible
point, and hence provides a finite lower bound on ζLD.

Proof. Since
∑
s∈S psω

0
s = 0 holds and, by construction, 0 =

∑
s∈S ps(x

0
s − z0),

we have
∑
s∈S psω

1
s = 0 also. We proceed by induction on k ≥ 1. At iteration k, the

problem solved for each s ∈ S at line 5 in the first iteration (t = 1) of Algorithm 2 may
be solved with the same optimal value by exchanging V(conv(Ks)) for Ks; this follows
from the linearity of the objective function. Thus, an optimal solution computed at
line 5 may be used in the computation of φs(ω̃

k
s ) carried out in line 7, where

ω̃ks := ω̂1
s = ωks + ρ(x̃s − zk−1) = ωks + ρ((1− α)zk−1 + αxk−1s − zk−1)

= ωks + αρ(xk−1s − zk−1).

By construction, we have at each iteration k ≥ 1 in Algorithm 3 that∑
s∈S

ps(x
k−1
s − zk−1) = 0 and

∑
s∈S

psω
k
s = 0,

which establishes that
∑
s∈S psω̃

k
s = 0. Thus, ω̃k is feasible for the Lagrangian dual

problem, so that φ(ω̃k) =
∑
s∈S psφ

k
s , and, since each φks is the optimal value of a

bounded and feasible mixed-integer linear program, we have −∞ < φ(ω̃k) <∞.

We establish convergence of Algorithm 3 for any α ∈ R and tmax ≥ 1. For the
special case in which we perform only one iteration of SDM for each outer iteration
(tmax = 1), we require the additional assumption that the initial scenario vertex sets
share a common point. More precisely, we require the assumption

(17)
⋂
s∈S

Projx(conv(V 0
s )) 6= ∅,
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which can, in practice, be effectively handled through appropriate initialization, under
the standard assumption of relatively complete recourse: for all x ∈ X and s ∈ S
there exists ys such that (x, ys) ∈ Ks. We describe one such initialization approach
in section 4.

Proposition 3.3. Let the convexified separable deterministic equivalent SMIP
(9) have an optimal solution, and let Algorithm 3 be applied to (9) with kmax = ∞,
ε = 0, α ∈ R, and tmax ≥ 1. If either tmax ≥ 2 or (17) holds, then limk→∞ φk = ζLD.

Proof. First note that for any tmax ≥ 1 the sequence of inner approximations
conv(V ks ), s ∈ S, will stabilize in that, for some threshold 0 ≤ k̄s, we have, for all
k ≥ k̄s,

(18) conv(V ks ) =: Ds ⊆ conv(Ks).

This follows due to the assumption that each expansion of the inner approxima-
tions conv(V ks ) takes the form V ks ← V k−1s ∪ {(x̂s, ŷs)}, where (x̂s, ŷs) is a vertex of
conv(Ks). Since each polyhedron conv(Ks), s ∈ S, has only a finite number of such
vertices, the stabilization (18) must occur at some k̄s <∞.

For tmax ≥ 2, the stabilizations (18), s ∈ S, are reached at some iteration k̄ :=
maxs∈S

{
k̄s
}

. Noting that Ds = conv(V ks ) for k > k we must have

(19) (xks , y
k
s ) ∈ argmin

x,y

{
Lρs(x, y, z

k−1, ωks ) : (x, y) ∈ conv(Ks)
}
.

Otherwise, due to Lemma 3.1, the call to SDM on line 7 must return V ks ⊃ V k−1s ,
contradicting the finite stabilization (18). Therefore, the k ≥ k̄ iterations of Algo-
rithm 3 are identical to Algorithm 1 iterations, and so Proposition 2.1 implies that
limk→∞ xks−zk = 0, s ∈ S, and limk→∞ φ(ωk) = ζLD. By the continuity of ω 7→ φs(ω)
for each s ∈ S, we have limk→∞ φk = limk→∞

∑
s∈S psφs(ω

k
s + α(xk−1s − zk−1)) =

limk→∞
∑
s∈S psφs(ω

k
s ) = limk→∞ φ(ωk) = ζLD for all α ∈ R.

In the tmax = 1 case, we have at each iteration k ≥ 1 the optimality

(xks , y
k
s ) ∈ argmin

x,y

{
Lρs(xs, ys, z

k−1, ωks ) : (xs, ys) ∈ conv(V ks )
}
.

By the definition of stabilization (18), the iterations k ≥ k̄ of Algorithm 3 are identical
to PH iterations applied to the restricted problem

(20) min
x,y,z

{∑
s∈S

ps(c
>xs + q>s ys) : (xs, ys) ∈ Ds ∀s ∈ S, xs = z ∀s ∈ S

}
.

We have initialized the sets (V 0
s )s∈S such that ∩s∈S Projx conv(V 0

s ) 6= ∅, so since
the inner approximations to conv(Ks) only expand in the algorithm, we have that
∩s∈S Projx(Ds) 6= ∅. Therefore, problem (20) is a feasible and bounded linear
program, and so the PH convergence described in Proposition 2.1 with Ds = Ds,
s ∈ S holds for its application to problem (20). That is, for each s ∈ S, we
have (1) limk→∞ ωks = ω∗s and limk→∞(xks − zk) = 0; and (2) for all limit points
((x∗s, y

∗
s )s∈S , z

∗), we have the feasibility and optimality of the limit points, which
implies x∗s = z∗ and

(21) min
x,y

{
(c+ ω∗s )>(x− x∗) + q>s (y − y∗) : (x, y) ∈ Ds

}
= 0.
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Next, for each s ∈ S the compactness of conv(Ks) ⊇ Ds, the continuity of the
minimum value function

ω 7→ min
x,y

{
(c+ ω)>x+ q>s y : (x, y) ∈ Ds

}
over ω ∈

{
ω :

∑
s∈S psωs = 0

}
, and the limit limk→∞ ω̃k+1

s = limk→∞ ωk+1
s +αρ(xks−

zk) = ω∗s , together imply that

(22) lim
k→∞

min
x,y

{
(c+ ω̃k+1

s )>(x− xk) + q>s (y − yk) : (x, y) ∈ Ds

}
= 0.

Recall that ω̃ks = ωks + ρα(xk−1s − zk−1) is the t = 1 value of ω̂ts defined in line 4 of
Algorithm 2. Thus, for k + 1 > k̄, we have due to the stabilization (18) that

(23) min
x,y

{
(c+ ω̃k+1

s )>(x− xk) + q>s (y − yk) : (x, y) ∈ Ds

}
=

min
x,y

{
(c+ ω̃k+1

s )>(x− xk) + q>s (y − yk) : (x, y) ∈ conv(Ks)
}

If (23) does not hold, then the inner approximation expansion Ds ⊂ conv(V k+1
s ) must

occur, since a point (x̂s, ŷs) ∈ conv(Ks) that can be strictly separated from Ds would
have been discovered during the iteration k+1 execution of Algorithm 2, line 5, t = 1.
The expansion Ds ⊂ conv(V k+1

s ) contradicts the finite stabilization (18), and so (23)
holds. Therefore, the equalities (22) and (23) imply that

(24) lim
k→∞

min
x,y

{
(c+ ω̃k+1

s )>(x− xk) + q>s (y − yk) : (x, y) ∈ conv(Ks)
}

= 0.

Our argument has shown that for all limit points (x∗s, y
∗
s ), s ∈ S, the stationarity

condition

(25) (c+ ω∗s )>(x− x∗s) + q>s (y − y∗s ) ≥ 0 ∀(x, y) ∈ conv(Ks)

is satisfied, which together with the feasibility x∗s = z∗, s ∈ S, implies that each
limit point ((x∗s, y

∗
s )s∈S , z

∗) is optimal for problem (9) and ω∗ is optimal for the dual
problem (8).

Thus, for all tmax ≥ 1, we have shown that limk→∞(xks − zk) = 0, s ∈ S, and
limk→∞ φ(ωk) = ζLD. By similar reasoning to that used in the tmax ≥ 2 case, it is
straightforward that, for all α ∈ R, we also have limk→∞ φk = ζLD.

While using a large value of tmax more closely matches Algorithm 3 to the original
PH algorithm as described in Algorithm 1, we are motivated to use a small value of
tmax since the work per iteration is proportional to tmax. Specifically, each iteration
requires solving tmax|S| MILP subproblems and tmax|S| continuous convex quadratic
subproblems. For reference, Algorithm 1 applied to problem (3) requires the solution
of |S| MIQP subproblems for each ω update and |S| MILP subproblems for each
Lagrangian bound φ computation.

3.2. Obtaining primal feasible solutions. As the FW-PH algorithm is de-
signed to solve (9) (which is an optimization over conv(Ks) rather than Ks), any
solution it returns at convergence may not satisfy the integrality requirements and
hence may not be primal feasible. Nevertheless, the information returned by FW-
PH at termination may be exploited heuristically to derive primal feasible solutions.
We suggest two simple heuristic strategies which use the solution ((xks , y

k
s )s∈S , z

k, ωk)
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returned by FW-PH, as defined in Algorithm 3. These strategies may be used regard-
less of whether or not convergence has been achieved at termination. Both strategies
take advantage of the assumption of relatively complete recourse: They evaluate a
candidate first-stage solution by solving each of the |S| single-scenario problems with
its first-stage variables fixed to the candidate values.

The first heuristic strategy, which we call H1, consists of evaluating each distinct
solution in the set of solutions {x̂ks : s ∈ S}, obtained in the last execution of line 7
of Algorithm 3, as a candidate first-stage solution.

The second strategy, H2, consists of solving the MIQPs, one for each s ∈ S, that
would have been solved in PH (line 12 in Algorithm 1) using z = zk, ω = ωk, and
considering Ds = Ks for s ∈ S, and evaluating each distinct first-stage solution found.
Notice that either strategy may generate multiple candidate first-stage solutions, in
particular when the FW-PH convergence criterion is not met at termination. In this
case, the one evaluated to yield the best objective function value is selected. In section
4, we provide numerical results that assess the performance of these strategies.

4. Numerical experiments. We performed computations using a C++ im-
plementation of Algorithm 1 (Ds = Ks, s ∈ S) and Algorithm 3 using CPLEX
12.5 [18] as the solver for all subproblems. For reading SMPS files into scenario-
specific subproblems and for their interface with CPLEX, we used modified versions
of the COIN-OR [3] Smi and Osi libraries. The computing environment is the Raijin
cluster maintained by Australia’s National Computing Infrastructure (NCI) and sup-
ported by the Australian Government [1]. The Raijin cluster is a high-performance
computing (HPC) environment which has 3592 nodes (system units), 57472 cores of
Intel Xeon E5-2670 processors with up to 8 GB PC1600 memory per core (128 GB
per node). All experiments were performed in a serial setting using a single node and
one thread per CPLEX solve.

In the experiments with Algorithms 1 and 3, we set the convergence tolerance at
ε = 10−3. For Algorithm 3, we set tmax = 1. Also, for all experiments performed,
we set ω0 = 0. In this case, convergence of our algorithm requires that (17) holds,
which can be guaranteed during the initialization of the inner approximations (V 0

s )s∈S .
Under the assumption of relatively complete resource, a straightforward mechanism
for ensuring that (17) holds is to solve the recourse problems for any fixed x̂ ∈ X.
Specifically, for each s ∈ S, let ŷs ∈ arg miny{q>s y : (x̂, y) ∈ Ks} and initialize V 0

s for
each s ∈ S so that {(x̂, ŷs)} ∈ V 0

s . For the computational experiments, we take x̂ to be
the first-stage variables from the solution to a single-scenario problem for one arbitrary
scenario, say scenario 1 ∈ S, and enrich the sets V 0

s by also including the solution to a
single-scenario problem for s. In each case, the single-scenario problem is a Lagrangian
problem of the form of (7), with ωs := ω0

s . Specifically, we initialize V 0
1 := {(x01, y01)}

and for each s ∈ S, s 6= 1, initialize V 0
s := {(x0s, y0s), (x01, ys)}, where (x0s, y

0
s) solves

minx,y{(c+ ω0
s)>x+ q>s y : (x, y) ∈ Ks} and ys solves miny{q>s y : (x01, y) ∈ Ks} for

each s ∈ S.
Experiments were performed on eight instances of three distinct problems, namely

the capacitated facility location problem (CAP) from [7], the dynamic capacity al-
location problem (DCAP) available in [5], and the server location under uncertainty
problem (SSLP), first introduced in [29].

The CAP problem is a two-stage SMIP with pure binary first-stage and continu-
ous second-stage variables arising in the context of network design. We selected the
instances coded as 101 and 102 in [7], using the first 250 from a list of 5000 scenarios
available. The DCAP problem is a two-stage SMIP arising in dynamic capacity ac-
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Table 1
Result summary for CAP problem instances: dual bounds.

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

20 0.05 0.17 0.09 509 398 445 T T T
100 0.01 0.00 0.00 178 446 440 1975.91 T T
500 0.07 0.00 0.00 540 92 93 T 931.84 986.83

1000 0.15 0.00 0.00 544 127 130 T 1345.04 1425.90
2500 0.34 0.00 0.00 581 259 274 T 3087.30 3276.03
5000 0.66 0.00 0.00 33 473 468 293.03 T T
7500 0.99 0.00 0.00 28 18 19 225.66 138.80 170.14

15000 1.59 0.00 0.00 545 28 33 T 246.65 283.53

(a) CAP-101-250; absolute percentage gap based on the known optimal value 733827.32.

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

20 0.47 0.46 0.49 422 426 412 T T T
100 0.01 0.00 0.00 219 408 405 3343.29 T T
500 0.08 0.00 0.00 48 46 46 757.09 524.11 540.72

1000 0.13 0.00 0.00 24 25 24 297.34 271.72 286.68
2500 0.29 0.00 0.00 13 16 16 151.72 160.46 171.43
5000 0.61 0.00 0.00 14 18 18 156.90 170.86 188.87
7500 0.93 0.00 0.00 17 22 23 187.08 224.37 237.81

15000 1.91 0.00 0.00 22 39 42 228.26 450.64 436.41

(b) CAP-102-250; absolute percentage gap based on the known optimal value 788996.97.

quisition and allocation under uncertainty. The problem has mixed-integer first-stage
variables and pure binary second-stage variables. We selected the instances coded as
233 and 243 (which encodes the number of resources, tasks, and periods, respectively),
using all 500 scenarios available. The SSLP problem is a two-stage SMIP arising in
server location under uncertainty. The problem has pure binary first-stage variables
and mixed-binary second-stage variables. We considered the instances coded as 5-25-
50, 5-25-100, 10-50-100, and 15-45-15 (which encode the number of servers, clients,
and scenarios, respectively). Details concerning the mathematical formulation, avail-
able optimal values, and best known bounds for these problems are described in detail
in [7] and [27] and are accessible at [2] for the DCAP and SSLP problems.

Two sets of Algorithm 3 experiments correspond to variants considering α = 0
and α = 1. For each problem, computations were performed for different penalty
values ρ > 0. The penalty values used in the experiments for the SSLP instances were
chosen to include those penalties that are tested in a computational experiment with
PH whose results are depicted in Figure 2 of [15]. For the other problem instances,
the set of penalty values ρ tested is chosen to capture a reasonably wide range of
performance potential for both PH and FW-PH. All computational experiments were
allowed to run for a maximum of two hours in wall clock time.

Tables 1–3 provide a summary indicating the quality of the Lagrangian bounds φ
computed at the end of each experiment for the eight problems with varying penalty
parameter ρ. In each of these tables, the first column lists the values of the penalty
parameter ρ, while the following are presented for PH and FW-PH (for both α = 0 and
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Table 2
Result summary for DCAP problem instances: dual bounds.

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

2 0.13 0.12 0.12 2234 576 570 T T T
5 0.22 0.09 0.09 2367 561 559 T T T

10 0.23 0.07 0.08 2583 592 573 T T T
20 0.35 0.07 0.07 2539 572 567 T T T
50 1.25 0.06 0.06 2721 578 580 T T T

100 1.29 0.06 0.06 2755 428 438 T 4016.29 4492.36
200 2.58 0.06 0.06 2667 256 262 T 1707.97 1848.49
500 2.58 0.07 0.07 2839 244 246 T 1799.88 1569.58

(a) DCAP-233-500; absolute percentage gap based on the best known upper bound 1737.73.

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

2 0.14 0.18 0.18 1710 558 577 T T T
5 0.20 0.13 0.13 2108 570 562 T T T

10 0.29 0.11 0.11 2110 562 559 T T T
20 0.52 0.10 0.10 2233 570 577 T T T
50 0.70 0.10 0.10 2355 578 579 T T T

100 1.32 0.09 0.09 2504 393 395 T 3744.33 3849.53
200 1.40 0.10 0.09 2568 244 261 T 1866.03 1854.85
500 2.11 0.10 0.10 2486 180 165 T 983.41 884.66

(b) DCAP-243-500; absolute percentage gap based on the known optimal value 2167.51.

α = 1) computations in the remaining columns: (1) the absolute percentage gap |(ζ∗−
φ)/ζ∗|∗100% between the computed Lagrangian bound φ and some reference value ζ∗

that is either a known optimal value for the problem or a known best bound thereof
(column “Gap (%)”); (2) the total number of dual updates (“# Iterations”); and (3)
the indication of whether the algorithm terminated due to the time limit, indicated by

letter “T”, or the satisfaction of the convergence criterion
√∑

s∈S ps ‖xks − zk−1‖
2
2 <

ε, indicated by the display of the time elapsed when convergence was attained (column
“Time”).

The following observations can be made from the results presented in Tables 1–3.
First, for small values of the penalty ρ, there is no clear preference between the bounds
φ generated by PH and FW-PH. However, for higher penalties, the bounds φ obtained
by FW-PH are consistently of better quality (i.e., higher) than those obtained by PH,
regardless of the variant used (i.e., α = 0 or α = 1). This tendency is illustrated, for
example, in Table 2(a), where the absolute percentage gap of the Lagrangian lower
bound with the known optimal value was 0.06% with ρ = 200 for FW-PH (α = 0),
while it was 2.58% for the same value of ρ for PH. This improvement is consistently
observed for the other problems and the other values of ρ that are not too close to
zero. Also, FW-PH did not terminate with suboptimal convergence or display cycling
behavior for any of the penalty values ρ in any of the problems considered. For
example, all experiments considered in Table 3(a) terminated due to convergence.

The percentage gaps suggest that the convergence for PH was suboptimal, while
it was optimal for FW-PH. Moreover, it is possible to see from these tables that the
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Table 3
Result summary for SSLP problem instances: dual bounds.

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

1 0.30 0.00 0.00 105 115 116 225.80 150.63 151.52
2 0.73 0.00 0.00 51 56 56 107.85 71.56 72.07
5 0.91 0.00 0.00 25 26 27 51.77 33.43 34.88

15 3.15 0.00 0.00 12 16 17 22.00 20.59 21.95
30 6.45 0.00 0.00 12 18 18 18.44 23.29 24.00
50 9.48 0.00 0.00 18 25 26 21.00 34.37 37.89

100 9.48 0.00 0.00 8 45 45 7.95 62.20 67.77

(a) SSLP-5-25-50; absolute percentage gap based on the known optimal value −121.60.

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

1 0.16 0.00 0.00 82 97 90 385.08 266.05 248.92
2 0.45 0.00 0.00 42 43 44 196.76 119.57 121.30
5 1.06 0.00 0.00 18 21 22 83.66 58.29 61.62

15 2.96 0.00 0.00 13 15 16 51.40 42.50 46.35
30 6.21 0.00 0.00 19 24 23 56.58 70.47 64.26
50 7.91 0.00 0.00 3123 38 36 T 113.21 107.54

100 7.91 0.00 0.00 27 74 70 44.60 223.73 216.66

(b) SSLP-5-25-100; absolute percentage gap based on the known optimal value −127.37.

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

1 0.57 0.22 0.22 130 234 234 T T T
2 0.63 0.03 0.03 131 226 227 T T T
5 1.00 0.00 0.00 104 218 219 4885.74 T T

15 2.92 0.00 0.00 33 45 118 1012.11 1463.75 3949.99
30 4.63 0.00 0.00 18 21 22 413.28 618.52 619.85
50 4.63 0.00 0.00 11 26 27 202.47 759.83 756.59

100 4.63 0.00 0.00 9 43 45 106.76 1302.04 1271.27

(c) SSLP-10-50-100; percentage gap based on the known optimal value −354.19.

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

1 2.85 2.15 2.17 224 304 300 T T T
2 2.21 1.00 1.00 193 272 272 T T T
5 1.21 0.01 0.03 181 180 178 7021.35 T T

15 4.13 0.00 0.00 421 84 86 T 5022.34 4986.36
30 7.89 0.00 0.00 35 66 68 424.76 1873.24 1866.31
50 7.89 0.00 0.00 23 67 65 257.40 992.90 1020.19

100 7.89 0.00 0.00 6 69 62 32.25 562.65 428.18

(d) SSLP-15-45-15; percentage gap based on the known optimal value −253.60.
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quality of the bounds φ obtained using FW-PH were not as sensitive to the value of
the penalty parameter ρ as that obtained using PH.

The FW-PH with α = 0 versus PH convergence profiles for the experiments
performed are given in Figures 1–4, in which we provide plots of wall time versus
Lagrangian bound values based on profiling of varying penalty for four of the eight
problems considered. The times scales for the plots have been set such that trends are
meaningfully depicted (1000s for CAP and DCAP instances, 100s for SSLP-5-25-50,
and 7000s for SSLP-15-45-15). The trend of the Lagrangian bounds is depicted with
solid lines for FW-PH with α = 0 and with dashed lines for PH. Plots providing the
same comparison for FW-PH with α = 1 are provided in Appendix A.

As seen in the plots of Figures 1–4, the Lagrangian bounds φ generated with PH
tend to converge suboptimally, often displaying cycling, for large penalty values. In
terms of the quality of the bounds obtained, while there is no clear winner when low
penalty ρ values are used, for large penalties, the quality of the bounds φ generated
with FW-PH is consistently better than for the bounds generated with PH, regardless
of the α value. This last observation is significant because the effective use of large
penalty values ρ in methods based on augmented Lagrangian relaxation tends to yield
the most rapid early iteration improvement in the Lagrangian bound; this point is
most clearly illustrated in the plot of Figure 3. The remaining plots have been omitted
due to space limitations.
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=15000-PH
=15000-FW-PH (  = 0)

Fig. 1. Convergence profile for CAP-101-250 (PH and FW-PH with α = 0).

To assess the performance of the ideas discussed in section 3.2 concerning the
generation of primal feasible solutions, we performed the following experiments. For
PH, we used the solution of MIQPs (calculated in line 12 in Algorithm 1) returned
by Algorithm 1 to give candidate first-stage solutions. Whenever PH has converged,
a unique nonanticipative (first-stage) primal feasible integral solution is returned.
Otherwise, PH might obtain distinct solutions for distinct scenarios; we evaluate all
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Fig. 2. Convergence profile for DCAP-233-500 (PH and FW-PH with α = 0).

Table 4
Result summary for CAP problem instances: primal bounds.

Gap (%) Time

ρ PH H1 H2 PH H1 H2

20 0.00 0.00 0.00 130.26 984.17 288.24
100 0.00 0.00 0.00 3.74 102.43 13.90
500 0.00 0.00 0.00 8.26 6.32 9.09

1000 0.00 0.00 0.00 7.89 2.97 9.19
2500 0.00 0.00 0.00 19.42 5.44 12.02
5000 0.00 0.00 0.00 3.36 7.98 13.27
7500 0.00 0.00 0.00 3.29 2.64 8.28

15000 0.10 0.00 0.00 8.83 3.10 8.06

(a) CAP-101-250; absolute percentage gap
based on the known optimal value 733827.32.

Gap (%) Time

ρ PH H1 H2 PH H1 H2

20 0.00 0.05 0.00 551.42 1504.03 537.83
100 0.00 0.00 0.00 3.70 545.65 15.76
500 0.00 0.00 0.00 4.47 2.95 10.53

1000 0.00 0.00 0.00 2.94 3.87 10.21
2500 0.00 0.00 0.00 3.11 6.81 9.94
5000 0.00 0.00 0.00 2.97 2.41 9.65
7500 0.00 0.00 0.00 3.14 2.85 9.44

15000 0.05 0.00 0.00 3.04 2.91 10.05

(b) CAP-102-250; absolute percentage gap
based on the known optimal value 788996.97.

distinct solutions and report that with the best objective function value. For FW-PH,
we analyze the two distinct strategies discussed in section 3, referred to as H1 and
H2, respectively.

In Tables 4–6, the first column lists the values of the penalty parameter ρ while
the remaining columns present for PH and FW-PH (for H1 and H2): (1) the absolute
percentage gap between ζ∗ (i.e., either a known optimal value for the problem or a
known best bound thereof) and the primal bound ζ obtained as described, which is
given by |(ζ − ζ∗)/ζ∗|, expressed as a percentage (column “Gap (%)”); and (2) the
total wall clock time taken to evaluate all candidate solutions and select that with
best objective function value. The results presented are for the variant of FW-PH
considering α = 0 only due to space limitations.
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Fig. 3. Convergence profile for SSLP-5-25-50 (PH and FW-PH with α = 0).

Table 5
Result summary for DCAP problem instances: primal bounds.

Gap (%) Time

ρ PH H1 H2 PH H1 H2

2 0.61 0.05 0.36 216.75 234.30 234.58
5 0.52 1.15 0.50 207.56 311.18 204.83

10 0.36 0.21 0.42 176.55 287.94 178.96
20 0.01 0.06 0.41 131.18 229.91 162.12
50 0.41 0.20 0.42 90.93 300.94 122.32

100 0.42 0.41 0.42 65.22 300.71 92.03
200 0.06 2.84 0.42 63.24 313.84 92.64
500 0.42 0.12 0.42 40.19 298.39 65.04

(a) DCAP-233-500; absolute percentage gap
based on the best known upper bound 1737.73.

Gap (%) Time

ρ PH H1 H2 PH H1 H2

2 0.05 0.17 0.01 290.91 405.02 278.85
5 0.01 0.09 0.01 205.49 445.42 227.52

10 0.05 0.16 0.01 173.84 407.50 186.12
20 0.05 0.01 0.01 155.00 413.32 164.86
50 0.01 0.46 0.01 149.15 439.40 145.58

100 0.96 0.01 0.01 47.81 393.20 136.77
200 1.05 0.01 0.01 49.28 448.63 136.00
500 1.05 0.40 0.01 54.06 429.09 108.74

(b) DCAP-243-500; absolute percentage gap
based on the known optimal value 2167.51.

As can be seen from these results, despite the simplicity of the proposed heuristics
to obtain primal feasible solutions, in most cases the primal bounds generated are of
good quality and often superior to those obtained from PH. Strategy H2 more often
presents better performance when compared to H1, but with no clear winner between
them in terms of percentage gap and time. The time taken for PH and FW-PH to
evaluate the solutions is similar for the two methods, despite the heuristic used. One
can notice that, in cases in which convergence is not observed (typically associated
with the consideration of smaller penalty ρ), the time taken to evaluate solutions is
typically higher due to the number of first-stage solutions to be considered. Overall,
these results suggest that it is possible in practice to employ these heuristics as the
times required are not prohibitive, particularly when convergence to a reasonably
good dual bound has been observed.
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Fig. 4. Convergence profile for SSLP-15-45-15 (PH and FW-PH with α = 0).

Table 6
Result summary for SSLP problem instances: primal bounds.

Gap (%) Time

ρ PH H1 H2 PH H1 H2

1 0.00 0.00 0.00 0.02 0.02 1.03
2 0.00 0.00 0.00 0.02 0.01 1.07
5 0.00 0.00 0.00 0.01 0.02 0.96

15 0.00 0.00 0.00 0.02 0.01 0.55
30 0.00 0.00 0.00 0.02 0.02 0.36
50 0.00 0.00 0.00 0.01 0.02 0.18

100 2.15 0.00 0.00 0.02 0.02 0.08

(a) SSLP-5-25-50; absolute percentage gap
based on the known optimal value −121.60.

Gap (%) Time

ρ PH H1 H2 PH H1 H2

1 0.00 0.00 0.00 0.03 0.22 2.50
2 0.00 0.00 0.00 0.03 0.06 2.36
5 0.00 0.00 0.00 0.02 0.03 2.08

15 0.00 0.00 0.00 0.03 0.03 1.14
30 0.00 0.00 0.00 0.05 0.03 0.74
50 0.00 0.00 0.00 0.16 0.03 0.37

100 1.40 0.00 0.00 0.04 0.03 0.16

(b) SSLP-5-25-100; absolute percentage gap
based on the known optimal value −127.37.

Gap (%) Time

ρ PH H1 H2 PH H1 H2

1 0.00 1.42 0.00 2.69 39.12 32.25
2 0.00 0.00 0.00 21.71 28.98 29.70
5 0.00 0.00 0.00 1.22 20.79 20.35

15 0.00 0.00 0.00 1.12 2.65 13.17
30 0.00 0.00 0.00 1.60 1.16 8.98
50 0.00 0.00 0.00 1.11 1.21 6.93

100 0.00 0.00 0.00 1.11 1.11 5.78

(c) SSLP-10-50-100; absolute percentage gap
based on the known optimal value −354.19.

Gap (%) Time

ρ PH H1 H2 PH H1 H2

1 0.00 0.79 0.00 3.88 5.10 32.63
2 0.00 0.00 0.00 5.82 5.27 29.27
5 0.00 0.16 0.00 0.95 32.87 22.57

15 0.00 0.00 0.00 2.51 0.98 4.10
30 0.16 0.00 0.00 1.54 0.95 1.56
50 0.52 0.00 0.00 0.90 0.94 2.11

100 0.00 0.00 0.00 0.94 0.98 1.52

(d) SSLP-15-45-15; absolute percentage gap
based on the known optimal value −253.60.
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5. Conclusions and future work. In this paper, we have presented an alter-
native approach to computing nonanticipativity Lagrangian bounds associated with
SMIPs that combines ideas from the progressive hedging (PH) and the Frank–Wolfe
(FW) methods. We first note that while Lagrangian bounds can be recovered with
PH, this requires—for each iteration and each scenario—the solution of an additional
MILP subproblem in addition to the MIQP subproblem. Furthermore, when using
the PH method directly, the Lagrangian bounds may converge suboptimally, cycle
(for large penalties), or converge very slowly (for small penalties).

To overcome the lack of theoretical support for the above use of PH, we first
described a straightforward integration of PH and an FW-like approach such as the
simplicial decomposition method (SDM), where SDM is used to compute the primal
updates in PH. Its convergence only requires noting that SDM applied to a convex
problem with a bounded polyhedral constraint set terminates finitely with optimal
convergence. However, for the stated goal of computing high-quality Lagrangian
bounds efficiently, the benefits of relying on the optimal convergence of SDM is far
outweighed by the computational costs incurred.

As an alternative, we propose the contributed algorithm, FW-PH, that is ana-
lyzed under general assumptions on how the Lagrangian bounds are computed and
on the number of SDM iterations used for each dual update. Furthermore, under
mild assumptions on the initialization of the algorithm, FW-PH only requires the so-
lution of a MILP subproblem and a continuous convex quadratic subproblem for each
iteration and each scenario. FW-PH is versatile enough to handle a wide range of
SMIPs with integrality restrictions in any stage, while providing rapid improvement
in the Lagrangian bound in the early iterations that is consistent across a wide range
of penalty parameter values. Although we have opted to focus on two-stage problems
with recourse, the generalization of the proposed approach to the multi-stage case is
also possible.

The numerical results are encouraging as they suggest that the proposed FW-PH
method applied to SMIP problems usually outperforms the traditional PH method
with respect to how quickly the quality of the generated Lagrangian bounds improves.
This is especially true with the use of larger penalty values. For all problems consid-
ered and for all but the smallest penalties considered, the FW-PH method displayed
better performance over PH in terms of the quality of the final Lagrangian bounds at
the end of the allotted wall clock time.

The improved performance of FW-PH over PH for large penalties is significant
because it is the effective use of large penalties enabled by FW-PH that yields the
most rapid initial dual improvement. This last feature of FW-PH would be most help-
ful in its use within a branch-and-bound or branch-and-cut framework for providing
strong lower bounds (in the case of minimization). In addition to being another means
to compute Lagrangian bounds, PH would still have a role in such frameworks as a
heuristic for computing a primal feasible solution to the SMIP, thus providing (in the
case of minimization) an upper bound on the optimal value. In fact, as demonstrated
by our numerical experiments, straightforward combinations of both methods pro-
vide heuristics that are capable of generating very good primal feasible solutions for
the problems considered. This suggests that the development of more sophisticated
heuristics is also a promising avenue of research.

Possible directions for future research include the following. First, FW-PH inher-
its the potential for parallelization from PH. Experiments for exploring the benefit
of parallelization are therefore warranted. Second, the theoretical support of FW-PH
can be strengthened with a better understanding of the behavior of PH (and its gen-
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eralization ADMM) applied to infeasible problems. Finally, FW-PH can benefit from
a better understanding of how the proximal term penalty coefficient can be varied to
improve performance.

Appendix A. Additional plots for PH vs. FW-PH for α = 1.
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Fig. 5. Convergence profile for CAP-101-250 (PH and FW-PH with α = 1).
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Fig. 6. Convergence profile for DCAP-233-500 (PH and FW-PH with α = 1).
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Fig. 7. Convergence profile for SSLP-5-25-50 (PH and FW-PH with α = 1).
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Fig. 8. Convergence profile for SSLP-15-45-15 (PH and FW-PH with α = 1).
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