
This article was downloaded by: [128.104.189.6] On: 12 December 2016, At: 06:32
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Strengthened Benders Cuts for Stochastic Integer
Programs with Continuous Recourse
Merve Bodur, Sanjeeb Dash, Oktay Günlük, James Luedtke

To cite this article:
Merve Bodur, Sanjeeb Dash, Oktay Günlük, James Luedtke (2017) Strengthened Benders Cuts for Stochastic Integer Programs
with Continuous Recourse. INFORMS Journal on Computing 29(1):77-91. http://dx.doi.org/10.1287/ijoc.2016.0717

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2016, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/ijoc.2016.0717
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


INFORMS Journal on Computing
Vol. 29, No. 1, Winter 2017, pp. 77–91
ISSN 1091-9856 (print) � ISSN 1526-5528 (online) https://doi.org/10.1287/ijoc.2016.0717

© 2016 INFORMS

Strengthened Benders Cuts for Stochastic Integer
Programs with Continuous Recourse

Merve Bodur
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada,

bodur@mie.utoronto.ca

Sanjeeb Dash, Oktay Günlük
Mathematical Sciences Department, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598

{sanjeebd@us.ibm.com, gunluk@us.ibm.com}

James Luedtke
Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706,

jim.luedtke@wisc.edu

With stochastic integer programming as the motivating application, we investigate techniques to use inte-
grality constraints to obtain improved cuts within a Benders decomposition algorithm. We compare the

effect of using cuts in two ways: (i) cut-and-project, where integrality constraints are used to derive cuts in
the extended variable space, and Benders cuts are then used to project the resulting improved relaxation, and
(ii) project-and-cut, where integrality constraints are used to derive cuts directly in the Benders reformulation.
For the case of split cuts, we demonstrate that although these approaches yield equivalent relaxations when
considering a single split disjunction, cut-and-project yields stronger relaxations in general when using multiple
split disjunctions. Computational results illustrate that the difference can be very large, and demonstrate that
using split cuts within the cut-and-project framework can significantly improve the performance of Benders
decomposition.
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1. Introduction
We study large-scale mixed-integer programs aris-
ing from two-stage stochastic integer programs (SIP)
with continuous recourse (second-stage) variables
and study techniques that use integrality constraints
on the first-stage variables to strengthen Benders
inequalities generated within the decomposition algo-
rithm. We are interested in problems having the fol-
lowing block-structure form

minimize cx+
∑

k∈K

pkd
kyk

s.t. Ax≥b1 x∈�q
+×�n−q

+ 1

T kx+W kyk ≥hk1 yk ∈�t
+

for all k∈K1

(1)

where K is a finite index set for scenarios, c ∈ �n,
b ∈�l, 0 ≤ q ≤ n, and for each k ∈K, pk > 0 (the prob-
ability of occurrence of scenario k), hk ∈ �m, dk ∈�t ,
and T k and W k are matrices of appropriate size.
In this formulation, variables x are called the first-
stage variables and when they are fixed, the problem
decomposes into subproblems, one for each scenario
k ∈ K. Variables yk for k ∈ K, on the other hand, are

referred to as recourse variables. This formulation is
also called the extensive formulation of the SIP.

When the set K is large, solving (1) directly as
a mixed-integer program may be difficult because
of its size. Therefore the stochastic programming lit-
erature has focused on methods to solve (1) via
decomposition, in which the problem is decomposed
into smaller subproblems, typically one per scenario.
Two common decomposition approaches are dual
decomposition (Carøe 1998, Carøe and Schultz 1999),
and Benders decomposition—also called the L-shaped
method (Van Slyke and Wets 1969). Both methods
solve a relaxation of (1) to obtain lower bounds and
use these bounds in a branch-and-bound framework.
In dual decomposition, a separate copy of the first-
stage variables is created for each scenario and these
copies are equated via new constraints. These so-
called nonanticipativity constraints are then relaxed
via Lagrangian relaxation, leading to a separate sub-
problem for each scenario. As these subproblems
are mixed-integer programs, the bound obtained via
Lagrangian relaxation is typically stronger than the
bound obtained from the continuous relaxation of (1).
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Solving the Lagrangian dual, however, can be time-
consuming due to the need to solve many mixed-
integer programs. Benders decomposition can be used
within an LP based branch-and-bound method where
a Benders reformulation of (1) is solved by decomposing
it into a master linear program consisting of the first-
stage variables and LP subproblems corresponding
to individual scenarios. More precisely, the Benders
reformulation contains the first-stage decision vari-
ables x, and additional variables, zk for k ∈ K, that
represent the expected cost of the second-stage prob-
lem. Cuts defining these variables are added by pro-
jecting the second-stage variables out of the formula-
tion, which is accomplished by solving an LP for each
scenario.

While Benders decomposition does not require
solving MIP subproblems as in dual decomposition,
a pure Benders decomposition algorithm may yield a
weak relaxation, leading to a large branch-and-bound
tree. Thus, an important question is how to use inte-
grality constraints to obtain improved LP relaxations
within the Benders decomposition framework. A nat-
ural approach (we call it project-and-cut) is to generate
Benders cuts to approximate the feasible region of the
Benders reformulation, and then use integrality infor-
mation to derive strong valid inequalities for this for-
mulation. In an alternative approach, which we refer
to as cut-and-project, valid inequalities that use inte-
grality constraints of the first-stage decision variables are
derived and added to the second-stage subproblems.
The resulting tightened linear programs are then used
to obtain stronger Benders cuts. An advantage of this
approach over deriving integrality-based cuts in the
Benders reformulation is that cuts exploiting subprob-
lem structure can easily be incorporated.

In this paper, we compare the strengths of relax-
ations obtained using these two approaches when the
valid inequalities used are split cuts. We first con-
sider a general setting where split cuts can either be
added to improve a formulation in an extended vari-
able space, or to the projection of this formulation.
We demonstrate that the relaxations are equivalent
when considering a single-split disjunction, but when
considering multiple-split disjunctions, obtaining the
cuts in the extended space can lead to a strictly bet-
ter relaxation. We derive a linear program that can be
used to generate cuts in the projected space that are
as strong as those that can be obtained by working
in the extended space. The size of this linear program
grows linearly with the number of splits, so it does
not appear to be a practical tool, but we still use it to
measure the effect of cut-and-project.

For SIP problems, it is impractical to generate split
cuts based on the extensive formulation of SIP. We
therefore instead generate (rank-1) split cuts based on

the constraints T kx + W kyk ≥ hk defining each sce-
nario (and the constraints Ax ≥ b and the integrality
of x) and augment these constraints with the split cuts
in an iterative fashion. These additional constraints
lead to strengthened Benders cuts for the scenario. We
compare this approach with the effect of (rank-1) split
cuts based on (unstrengthened) Benders cuts approx-
imating the LP relaxation of Benders reformulation.
For an SIP with a single second-stage scenario, the
previous paragraph implies that cut-and-project dom-
inates project-and-cut, at least if split cuts are used
and separated exactly; we use a heuristic generator
(for rank-1 GMI cuts (Dash and Goycoolea 2010)) in
both cases. In the presence of multiple scenarios, nei-
ther approach is dominant. Project-and-cut can derive
split cuts based on Benders cuts from multiple sce-
narios; the scenario-based cut-and-project framework
only derives split cuts based on individual scenario
subproblems. On the other hand, the Benders cuts
generated in project-and-cut may be an incomplete
representation of the LP relaxation of the Benders
reformulation.

We conduct an extensive numerical study on two
different SIP problems to compare these two ap-
proaches. On the first test problem, a stochastic facil-
ity location problem, scenario-based split cuts in the
extended space enable all instances to be solved effi-
ciently, whereas using split cuts based on the (incom-
plete) master LP approximation of the Benders refor-
mulation yields large optimality gaps after the time
limit. On the second test problem, a stochastic net-
work interdiction problem (Pan and Morton 2008), the
results were more mixed. Split cuts in the extended
space significantly improved Benders decomposition
when no other cuts are used. However, for this prob-
lem class we found that using cuts derived from
the Benders reformulation was also very effective.
Thus, we conclude either approach may be important,
depending on the problem structure.

The cut-and-project approach has previously been
usedinCarøe (1998),TannerandNtaimo(2008),Ntaimo
(2013), Gade et al. (2014), Zhang and Küçükyavuz
(2014), and Beier et al. (2015), though with different
classes of valid inequalities, and not for continuous
recourse problems. The papers Gade et al. (2014)
and Zhang and Küçükyavuz (2014) are most closely
related to our work, and we provide a detailed com-
parison of our work to these papers in Section 3.4.
The primary contribution of our work to this stream
of literature is to provide understanding, through the-
oretical results and an extensive computational study,
of the strength and limitations of the cuts generated
using the cut-and-project approach in comparison to
the project-and-cut approach. In our computational
study, we demonstrate the applicability and effective-
ness of the cut-and-project approach on instances with
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continuous recourse. In addition, the test instances
we consider are larger than those considered in the
papers mentioned previously. Specifically, the net-
work interdiction instances that we consider have up
to 320 binary first-stage variables and over 450 sce-
narios, and our facility location instances have up
to 50 binary first-stage variables and 1,500 scenarios.
The previous studies mentioned earlier except Tanner
and Ntaimo (2008) and Beier et al. (2015) consider
at most 15 binary first-stage variables. Tanner and
Ntaimo (2008) consider a set of test instances with up
to 78 binary first-stage variables but only 23 scenar-
ios, and Beier et al. (2015) test on instances with up
to 40 binary first-stage variables, but are only able to
solve instances with 50 or fewer scenarios.

The remainder of this paper is organized as fol-
lows. In Section 2 we present our general results
comparing the use of split cuts in an extended vs.
a projected variable space. We remark that the sig-
nificance of these results is not restricted to their
application in stochastic integer programming. In Sec-
tion 3 we describe Benders decomposition for SIP in
more detail, and interpret the results of Section 2 in
this context. We describe the results of our numerical
study in Section 4.

2. Project-and-Cut vs. Cut-and-Project
for Split Cuts

In this section we first formally describe split cuts and
then compare the effect of applying them to a poly-
hedral set with that of applying them to a formula-
tion of this set in a higher dimensional space. In the
two-stage stochastic programming context, this relates
to comparing the effect of applying split cuts to the
extensive formulation with that of applying them to
the Benders reformulation. We discuss this more pre-
cisely in Section 3.

2.1. Split Cuts
Let P ⊆ �n × �q be a mixed integer set defined on
variables 4x1 z5 and let PLP denote its linear relaxation.
Let � ∈�n be a row vector, � ∈� and let

S = 84x1 z5 ∈�n+q2 � + 1 >�x > �9

be the split set associated with 4�1�5 in �n+q . Then,
an inequality cx + dz ≥ f is called a split cut for PLP

generated by S if it is valid for conv4PLP\S5. In other
words, cx+ dz≥ f is a split cut if it is valid for both

PLP
∩ 84x1 z5 ∈�n

×�q2 �x ≤ �9 and

PLP
∩ 84x1 z5 ∈�n

×�q2 �x ≥ � + 190

The split closure of P is the collection of all points
in PLP that satisfy all split cuts generated by split

sets S for all � ∈ �n, and � ∈ �. All points in P sat-
isfy every split cut for PLPand multiple split cuts can
be generated using the same split set. For a fixed
split set a most violated split cut (if there is one)
for a given point can be found by solving a linear
program. Even though separation is easy when the
split set is fixed, it is NP-hard to find a split set
that leads to a violated cut (Caprara and Letchford
2003). Some of the practical algorithms that are cur-
rently available are heuristics that look for violated
rank-1 Gomory mixed-integer (GMI) cuts using differ-
ent bases of the simplex tableau associated with PLP

(Dash and Goycoolea 2010, Fischetti and Salvagnin
2011, Bonami 2012).

2.2. Projected Split Cuts
We next compare the effect of applying split cuts to
a polyhedral set PLP with that of applying them to
an extended formulation of PLP. More precisely, let Q ⊆

�n ×�q ×�t be a mixed integer set defined on vari-
ables 4x1 z1y5 such that its continuous relaxation sat-
isfies PLP = Proj4x1 z54Q

LP5. (Here Proj4x1 z54S5 stands for
the orthogonal projection of the set S in the space of
4x1 z5 variables.) We call QLP an extended formulation of
PLP. Note that this also implies that P = Proj4x1 z54Q5.
The space of an extended formulation is referred to
as “extended (variable) space” throughout the paper.

For � ∈�n and � ∈�, let S ′ = 84x1 z1y5 ∈�n+q+t2 � +

1 >�x > �9 denote split sets associated with 4�1�5 in
�n+q+t . Note that the split set S ′ and the set S are gen-
erated by the same � ∈�n and � ∈�, but in different
spaces. Split cuts for QLP generated by S ′ and the split
closure of Q are defined as in Section 2.1.

We next show that the projection of QLP\S ′ in the
space of the 4x1 z5 variables is the same as PLP\S.

Lemma 1. Let S ∈ �n+q and S ′ ∈ �n+q+t be two split
sets generated by the same � ∈ �n and � ∈ �. Then,
PLP\S = Proj4x1 z54Q

LP\S ′5.

Proof. Let 4x̂1 ẑ5 ∈ PLP\S. As, 4x̂1 ẑ5 ∈ PLP, there
exists at least one point 4x̂1 ẑ1 ŷ5 ∈ QLP. Furthermore,
as 4x̂1 ẑ5 6∈ S, we have 4x̂1 ẑ1 ŷ5 6∈ S ′ and consequently
4x̂1 ŷ1 ẑ5 ∈ QLP\S ′ implying 4x̂1 ŷ5 ∈ Proj4x1 z54Q

LP\S ′5.
This establishes that PLP\S ⊆ Proj4x1 z54Q

LP\S ′5.
Similarly, if 4x̂1 ẑ5 ∈ Proj4x1 z54Q

LP\S ′5, there is a point
4x̂1 ẑ1 ŷ5 ∈ QLP\S ′. Therefore 4x̂1 ẑ5 ∈ PLP. In addition,
as 4x̂1 ẑ1 ŷ5 6∈ S ′, we have 4x̂1 ẑ5 6∈ S and therefore
Proj4x1 z54Q

LP\S ′5⊆ PLP\S. �
Clearly, Lemma 1 implies that conv4PLP\S5 =

conv4Proj4x1 z54Q
LP\S ′55 and therefore split cuts gener-

ated by (essentially) the same split set have the same
effect in the projected space, whether they are applied
before or after the projection. This observation, how-
ever, does not hold when split cuts generated by mul-
tiple split sets are considered as we show in the next
Lemma.
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Lemma 2. Let S11 0 0 0 1 Sk be k > 1 split sets for P and
let S ′

11 0 0 0 1 S
′

k be the corresponding split sets for Q. Then

k
⋂

i=1

conv4PLP
\Si5⊇ Proj4x1 z5

( k
⋂

i=1

conv4QLP
\S ′

i5

)

1

and the inclusion is strict in some cases.

Proof. We first show the inclusion “⊇” and then
present an example when the inclusion is strict. Let
4x̂1 ẑ5 ∈ Proj4x1 z54

⋂k
i=1 conv4QLP\S ′

i55, then there exists
ŷ ∈ �t such that 4x̂1 ẑ1 ŷ5 ∈ conv4QLP\S ′

i5 for i =

11 0 0 0 1 k. Therefore, by Lemma 1, we have 4x̂1 ẑ5 ∈

conv4PLP\Si5 for i = 11 0 0 0 1 k and consequently, the
inclusion holds.

To see that the inclusion is sometimes strict, con-
sider the following example where n = 2, q = 0 and
t = 1. Let PLP and QLP be defined as

PLP
= conv841/2105141/211514011/2514111/259⊆�21

QLP
= conv841/210105141/21110514011/211514111/21159

⊆ �31

(see Figure 1). In addition, let S1 = 84x11x25 ∈ �22 1 >
x1 > 09 and S2 = 84x11x25 ∈�22 1 > x2 > 09 be two split
sets for P , and S ′

1 and S ′
2 be the corresponding split

sets for Q.
Notice that conv4PLP\S15 = conv841/21051 41/21159

and conv4PLP\S25 = conv84011/251 4111/259 and con-
sequently, conv4PLP\S15 ∩ conv4PLP\S25 = 841/211/259.
However, conv4QLP\S ′

15 = conv841/2101051 41/2111059
and conv4QLP\S ′

25 = conv84011/21151 4111/21159 and
conv4QLP\S ′

15∩ conv4QLP\S ′
25= �. �

The split closure of the set P in the previous proof
is in fact equal to 841/211/259 (Cornuéjols and Li 2002)
and Lemma 2 establishes that the projection of the
split closure of Q is strictly contained in the split
closure of P even though Proj4x1 z54Q

LP5 = PLP. Con-
sequently, deriving split cuts in the extended space
rather than in the projected space can yield a stronger
relaxation. We note that a similar observation is made
by Modaresi et al. (2015) in the context of mixed-
integer nonlinear programming but we are not aware
of this observation having been made in the context
of stochastic integer programming.

x1

z1

x2

x1

x2

Figure 1 The Set QLP and Its Projection PLP

We note that the Lovász-Schrijver (1991) lift-and-
project operator N4P5 can be viewed as applying split
cuts—based on split sets of the form 8x ∈ �n2 0 <
xi < 19—to an extended formulation. In this setting,
the y variables in Q represent linearized products of
pairs of variables from x1z and the constraints yii = y0i
in Lovász and Schrijver (1991, pp. 169) (correspond-
ing to a linearization of x2

i = xi) can be obtained as
split cuts in the extended space.

2.3. Working in the Projected Space
We next study how to solve the separation problem in
the projected space when an explicit formulation for
PLP is not available. This is quite relevant in two-stage
stochastic programming as the LP relaxation of the
extensive formulation is given explicitly whereas the
corresponding Benders reformulation is not. Let QLP,
the extended formulation of PLP, be given as follows:

QLP
= 84x1 z1y5 ∈�n

×�q
×�t2

Hx+Kz+Ly ≥ g1 x1y1z≥ 090

Furthermore, let S ′
i = 84x1 z1y5 ∈ �n+q+t2 � i + 1 >

� ix > � i9 for i ∈ I be a given collection of split sets.
Then, it is possible to generate cuts for

P̂ = Proj4x1 z5

(

⋂

i∈I

conv4QLP
\S ′

i5

)

(2)

using a single linear program.

Theorem 1. The inequality

cx+ dz≥ f (3)

is valid for the set P̂ if and only if there exists a solution
to the following set of inequalities:

c=
∑

i∈I

ci1 d=
∑

i∈I

di1 0=
∑

i∈I

hi1 f =
∑

i∈I

f i1 (4)

ci ≥�i
1H−�i

1�
i ci ≥�i

2H+�i
2�

i

di ≥�i
1K di ≥�i

2K
hi ≥�i

1L hi ≥�i
2L

f i ≤�i
1g−�i

1�
i f i ≤�i

2g+�i
24�

i+15
�i

11�
i
2 ≥0 �i

11�
i
2 ≥01 ci1di1f i free























∀ i∈ I1 (5)

where ci, di, �i
1, and �i

2 are row vectors of appropriate
dimension, and f i, �i

1, and �i
2 are real numbers for all

i ∈ I .

Proof. Let Q′
i denote conv4QLP\S ′

i5. Inequalities (5)
ensure that for each i ∈ I the inequality cix + diz +

hiy ≥ f i is valid for Q′
i. Consequently, by inequal-

ity (4), cx + dz ≥ f is valid for
⋂

i∈I Q
′
i and therefore

valid for P̂ .
Conversely, assume that inequality (3) is valid for

P̂ = Proj4x1 z5 4
⋂

i∈I Q
′
i5. Thus, cx + dz ≥ f is valid for

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

10
4.

18
9.

6]
 o

n 
12

 D
ec

em
be

r 
20

16
, a

t 0
6:

32
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Bodur et al.: Strengthened Benders Cuts
INFORMS Journal on Computing 29(1), pp. 77–91, © 2016 INFORMS 81

⋂

i∈I Q
′
i and therefore it is a nonnegative linear com-

bination of valid inequalities for
⋂

i∈I Q
′
i. As any valid

inequality for
⋂

i∈I Q
′
i is a nonnegative linear combi-

nation of valid inequalities for Q′
i, we have that cx +

dz ≥ f can be obtained by a nonnegative linear com-
bination of valid inequalities for Q′

i. Consequently, for
each i ∈ I there exist a nonnegative weight wi, and an
inequality

cix+ diz+hiy ≥ f i (6)

valid for Q′
i such that c =

∑

i∈I c
i, d =

∑

i∈I d
i, 0 =

∑

i∈I h
i, and, f =

∑

i∈I f
i. Finally, note that if inequal-

ity (6) is valid for Q′
i, there must exist �i

11�
i
21�

i
1,

and �i
2 that satisfy inequalities (5). �

Consequently, for a given point 4x̄1 z̄5 6∈ P̂ , a most
violated valid inequality can be found by solving the
following linear program:

minimize z= cx̄+ dz̄− f (7a)

subject to ��1�1 + ��2�1 + ��1�1 + ��2�1 ≤ 11 (7b)

inequalities (4), (5)1 (7c)

where inequality (7b) can be replaced with any
other normalization constraint that truncates the cone
defined by inequalities (4), (5).

In the case of a single split set, a consequence of
Lemma 1 and Theorem 1 is that, split cuts for the pro-
jected set PLP can be separated even when an explicit
characterization of this set is not available. In the
stochastic programming context, this implies that split
cuts for the Benders reformulation can be generated
without computing the complete reformulation.

We next present an observation that shows that
only a subset of the split sets are needed when solving
the separation LP (7).

Lemma 3. Let 4x̄1 z̄5 ∈�n+q be a given point such that
4x̄1 z̄5 ∈ Si for i ∈ Ī and 4x̄1 z̄5 6∈ Si for i ∈ I\Ī . If 4x̄1 z̄5 6∈ P̂ ,
then

4x̄1 z̄5 6∈ Proj4x1 z5

(

⋂

i∈Ī

conv4QLP
\S ′

i5

)

0

Proof. Let Q′
i denote conv4QLP\S ′

i5 and assume
that there exists a point 4x̄1 z̄5 ∈ Proj4x1 z54

⋂

i∈Ī Q
′
i5. Then,

by definition, there exist a point 4x̄1 z̄1 ȳ5 ∈ 4
⋂

i∈Ī Q
′
i5.

As 4x̄1 z̄1 ȳ5 ∈ QLP and 4x̄1 z̄5 6∈ Si for i ∈ I\Ī , we have
4x̄1 z̄1 ȳ5 ∈ Q′

i for i ∈ I\Ī . Therefore, 4x̄1 z̄1 ȳ5 ∈ 4
⋂

i∈I Q
′
i5

and consequently, 4x̄1 z̄5 ∈ P̂ . �
Therefore, removing the variables and constraints

associated with split sets that exclude the given point
(i.e., all indices in I\Ī) from the separation LP (7)
yields an equivalent formulation with reduced size.

3. Benders Decomposition and
Cut-and-Project

In the previous section we established that applying
splits cuts to an extended formulation before project-
ing it to a lower dimensional space yields a stronger
relaxation than first projecting it to the lower dimen-
sional space and then adding split cuts. In the context
of two-stage stochastic programming, this means that
adding split cuts to the extensive formulation yields
better bounds than adding split cuts to the Benders
reformulation. While working with the extensive for-
mulation directly is typically not practical, cut-and-
project can be applied it to each scenario separately in
the Benders decomposition framework. We start with
a slightly modified version of the extensive formula-
tion described in Section 1:

minimize cx+pz

s.t. Ax≥b1 x∈�q
+×�n−q

+ 1

zk ≥dkyk1 zk ∈�+ for all k∈K1

T kx+W kyk ≥hk1 yk ∈�t
+

for all k∈K1

(8)

where the new variable zk denotes the cost associated
with the second-stage problem in scenario k ∈ K. As
before, variables x are the first-stage variables and yk1
for k ∈K, are the recourse variables.

We next describe Benders decomposition and how
it is used to solve (8). We then discuss scenario-based
cut-and-project for Benders decomposition and point
out its limitations.

3.1. Benders Decomposition
Benders decomposition solves a reformulation of (8)
where the recourse variables yk are projected out lead-
ing to a reformulation defined on the first stage vari-
ables only. In other words, if

QLP
k =

{

4x1 zk1y
k5 ∈�n

+
×�×�t

+
2 zk ≥ dkyk1

T kx+W kyk
≥ hk

}

1

then a Benders cut is an inequality valid for

Proj4x1 zk54Q
LP
k 5 = 84x1 zk5 ∈�n

+
×�2

∃yk such that 4x1 zk1y
k5 ∈QLP

k 90

Letting X = 8x ∈ �q
+ ×�n−q

+ 2 Ax ≥ b91 Benders decom-
position is a method for solving (8) by solving the
Benders reformulation

min8cx+ pz2 x ∈X1

4x1zk5 ∈ Proj4x1 zk54Q
LP
k 5 for k ∈K90 (9)

When �K� is large, this reformulation reduces the vari-
able space significantly. Although Proj4x1 zk54Q

LP
k 5 is a

polyhedron, it is usually impractical to explicitly com-
pute it, and instead Benders decomposition implicitly

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

10
4.

18
9.

6]
 o

n 
12

 D
ec

em
be

r 
20

16
, a

t 0
6:

32
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Bodur et al.: Strengthened Benders Cuts
82 INFORMS Journal on Computing 29(1), pp. 77–91, © 2016 INFORMS

approximates this projection in an iterative fashion
using Benders cuts.

Modern implementations of the Benders decompo-
sition algorithm for a problem with integer first-stage
variables work by building a single branch-and-
bound tree where node relaxations are solved via
Benders cuts. Let PLP

k 2= Proj4x1 zk54Q
LP
k 5 for k ∈ K and

let Bk ⊇ PLP
k represent the polyhedron defined by the

Benders cuts from scenario k currently in the mas-
ter LP relaxation. Initially, Bk = �n+1. Given a node
(including the root) relaxation solution 4x̄1 z̄5, if x̄
satisfies the integrality constraints, we determine if
4x̄1 z̄k5 ∈ PLP

k for k ∈K by solving the second-stage LP
subproblem for scenario k ∈K:

fk4x̄5= min8z2 z≥ dky1W ky ≥ hk
− T kx̄1 y ≥ 090 (10)

First consider the case when the LP in (10) has a fea-
sible solution. In this case if z̄k ≥ fk4x̄5 then 4x̄1 z̄k5 ∈

PLP
k . Otherwise, if 411 �̄5 is an optimal dual solution

to the linear program (10), then 4x̄1 z̄5 violates the
Benders cut

zk + �̄T kx ≥ �̄hk0 (11)

If the LP in (10) is infeasible, then there exists a dual
vector 401 �̄5 ≥ 0 that certifies the infeasibility of the
LP. In this case, �̄W k = 0 and a so-called feasibil-
ity cut of the form �̄T kx ≥ �̄hk can be constructed.
In either case if a violated cut is found, it is added
to the description of Bk and the node master LP is
solved again. This process is repeated until either
4x̄1 z̄k5 ∈ PLP

k for all k ∈ K, at which point 4x̄1 z̄k5 is an
optimal solution of the node LP, or x̄ violates an inte-
grality constraint, at which point we can either con-
tinue generating Benders cuts, or we can branch on a
fractional integer variable.

3.2. Scenario-Based Cut-and-Project
To motivate the scenario-based cut-and-project ap-
proach, we first compare the LP relaxation obtained
by Benders decomposition with that obtained via dual
decomposition. Let

QIP
k = conv

{

4x1 zk1y
k52 x ∈X14x1zk1y

k5 ∈QLP
k

}

and consider the problem

min
{

cx+ pz2 x ∈X1

4x1zk5 ∈ Proj4x1 zk54Q
IP
k 5 for k ∈K

}

1 (12)

where QLP
k in (9) is replaced with QIP

k . Clearly, (12)
is equivalent to (8). However, the bound from the
LP relaxation of (12), obtained by replacing X with
its continuous relaxation XLP, dominates that of (9).
In the dual decomposition method, one solves the
continuous relaxation of (12) to obtain lower bounds.
This method leads to smaller enumeration trees com-
pared to Benders decomposition due to stronger

lower bounds, which are obtained at the expense of
solving MIP subproblems.

The idea of scenario-based cut-and-project is to
obtain stronger Benders cuts that ideally yield a
relaxation closer to that of the dual decomposition
relaxation, but without solving MIP subproblems.
Specifically, we reformulate (9) by replacing QLP

k with
a tighter set QS

k which satisfies QIP
k ⊆ QS

k ⊆ QLP
k 0

The polyhedron QS
k is obtained by augmenting QLP

k

with valid inequalities for QIP
k , which are derived

by using integrality information of first-stage vari-
ables. When the continuous relaxation of this new for-
mulation is solved via Benders decomposition, one
obtains stronger Benders cuts, i.e., cuts that are valid
for Proj4x1 zk54Q

IP
k 5 but are potentially not valid for

Proj4x1 zk54Q
LP
k 5. Ideally, one should use QIP

k instead
of QS

k here, but characterizing the linear description
of QIP

k , in general, is a difficult task.
The deterministic version of many SIP problems

are well-studied integer programs, in which case one
can use problem-specific structure to obtain QS

k . For
instance, for capacitated network design problems,
cutset inequalities can be used (Bienstock and Günlük
1996). This approach would require implementation
of different cut separation routines for different prob-
lem classes.

Alternatively, one can obtain QS
k by strengthening

QLP
k with general purpose cutting-planes that do not

use problem structure. In our computational study,
presented in Section 4, we augment QLP

k with split
cuts to obtain QS

k . In the integer programming liter-
ature (Balas et al. 1996, Balas and Saxena 2008, Dash
et al. 2010), split cuts are known to be very effective at
approximating the integer hulls of practical problems.
In addition, there are practical heuristics (Dash and
Goycoolea 2010, Fischetti and Salvagnin 2011, Bonami
2012) that find violated Gomory mixed-integer (GMI)
cuts that form a subclass of split cuts.

We next discuss how we implement scenario-
based cut-and-project. Suppose that we have solved a
second-stage subproblem (10) for a scenario k ∈K and
obtained a solution 4z∗1y∗5. We then try to find a valid
inequality of the form ax+ byk ≥ c for the set QIP

k that
cuts off the solution 4x̄1 z∗1y∗5. If such an inequality is
found, then T k, W k and hk are augmented by a1 b and
c respectively, and the inequality byk ≥ c−ax̄ is added
to the LP (10) that is resolved to get updated values
of z∗1y∗, but not x̄. This process can be repeated as
long as more violated inequalities are added to (10).
At the end, a Benders cut, zk + �̄T kx ≥ �̄hk, or a fea-
sibility cut, �̄T kx ≥ �̄hk, is formed and added to the
master LP relaxation if it cuts off the current relax-
ation solution 4x̄1 z∗5. We emphasize that the matri-
ces W k, T k and the vector hk are not fixed as they
are augmented with new rows corresponding to the
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inequalities added in this procedure. The dual vec-
tor �̄ also increases in size.

3.3. Limitations of Scenario-Based Cut-and-Project
Let the LP relaxation of the extensive formulation of
the SIP be

QLP
=
{

4x1z1y52 x∈XLP14x1zk1y
k5∈QLP

k for all k∈K
}

and let

PLP
=
{

4x1 z52 x ∈XLP1 4x1 zk5 ∈ PLP
k for all k ∈K

}

denote its projection in the space of first-stage vari-
ables. In addition, let SC4 · 5 denote the split clo-
sure of a polyhedral set. So far, we established that
Proj4x1 z54SC4Q

LP55 is always contained in SC4PLP5 and
that the containment is sometimes strict. The scenario-
based cut-and-project approach, however, does not
work with Proj4x1 z54SC4Q

LP55, but instead works with
an approximation of the set Proj4x1 z54Q

S5, where

QS
=
{

4x1 z1y52 x ∈XLP1

4x1 zk1y
k5 ∈ SC4QLP

k 5 for all k ∈K
}

0

Clearly, in some cases we have

Proj4x1 z54SC4Q
LP55= Proj4x1 z54Q

S5⊂ SC4PLP5

for example when �K� = 1 and XLP = �n. We next
present an example to show that it is also possible
to have

SC4PLP5⊂ Proj4x1 z54Q
S50

Consider the following set

QLP
= 84x1 z5 ∈�2

×�22 4x1 z15 ∈QLP
1 1 4x1 z25 ∈QLP

2 9

x1 x1

z1 z2

x2 x2

x2x2

x2

x1

x1

x1

Figure 2 Sets QLP
1 , QLP

2 on Top; Their Projections PLP
1 , PLP

2 in the
Middle; and PLP

1 ∩ PLP
2 on the Bottom

where QLP
1 = conv8401010514110105140111051401011591

and QLP
2 = conv840101051411110514011105140111159 (see

Figure 2). Clearly, both QLP
1 and QLP

2 are integral,
and consequently, SC4QLP

1 5=QLP
1 and SC4QLP

2 5=QLP
2 ,

implying Proj4x1z54Q
S5= Proj4x1z54Q

LP5. However, PLP =

conv840105140115141/211/259 and SC4PLP5=conv8401051
401159 and therefore SC4PLP5 is equal to the integer hull
of PLP.

In conclusion, while the cut-and-project approach
with split cuts improves upon the basic Benders de-
composition approach, split cuts in the projected
space can still be useful. In Section 4, we discuss this
further in a computational setting.

3.4. Related Literature
There is a significant amount of recent work study-
ing valid inequalities for SIP having integer or mixed-
integer recourse variables (Carøe 1998, Tanner and
Ntaimo 2008, Gade et al. 2014, Zhang and Küçükyavuz
2014, Ntaimo 2013, Sen and Higle 2005, Carøe and Tind
1998, Sen and Sherali 2006). Much of the focus of this
work has been the investigation of methods that use
cutting planes to approximate the value function of
the second-stage program, with the goal of obtaining
a finitely convergent algorithm.

In contrast, we are focused on problems with
(mixed-)integer first-stage variables, but continuous
recourse variables. For such problems, a finitely con-
vergent algorithm can be obtained using standard
Benders cuts, but obtaining stronger cuts can still be
important for improving computational performance.
The cut-and-project approach can also be applied
to improve the relaxations of stochastic integer pro-
grams with integer recourse variables. In fact, cut-
and-project provides a unified view of some of the
previous work on valid inequalities for SIP with inte-
ger recourse variables, where different studies have
used different classes of cuts in the subproblem space.
In particular, lift-and-project split cuts (split cuts using
only single variable disjunctions) were used by Carøe
(1998) and extended and implemented by Tanner
and Ntaimo (2008). Ntaimo (2013), used the so-called
Fenchel cuts, which are inequalities obtained through
an explicit use of the equivalence between optimiza-
tion and separation, while Beier et al. (2015) extended
them to scenario-wise Fenchel cuts.

The papers by Gade et al. (2014) and Zhang and
Küçükyavuz (2014) are most closely related to our
particular implementation of cut-and-project, because
they also use Gomory mixed-integer (GMI) cuts. Gade
et al. (2014) and Zhang and Küçükyavuz (2014) refer
to their cuts as parametric Gomory cuts, but they can
also be viewed as standard Gomory cuts that are
derived from an equation that is valid for the set QLP

k .
The key difference between our use of GMI cuts and
that proposed in these papers is in the method for
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obtaining a basis from which to derive the GMI cuts.
In Gade et al. (2014), the method for constructing a
basis is restricted to the case when a binary first-
stage solution x̄ has been obtained. In that approach,
the basis is constructed using the basis obtained
from solving the second-stage subproblem, and then
extending that to a basis in the 4x1yk5 space by treat-
ing all the x variables as nonbasic variables. In our
use of GMI cuts and that of Zhang and Küçükyavuz
(2014), it is not required that all first-stage variables
be binary, and cuts can be applied at fractional first-
stage solutions x̄. In Zhang and Küçükyavuz (2014),
a basis in the 4x1yk5 is constructed using information
from the master and the subproblem bases. We use
the method of Dash and Goycoolea (2010) to obtain
a feasible basis of the set QLP

k . This approach offers
more flexibility in the choice of basis from which
to derive a cut, potentially yielding stronger cuts.
Another difference is that our approach always finds
a basis of the original LP relaxation QLP

k , i.e., with-
out any cuts added, so that the cuts we generate are
all rank-1 GMI cuts, whereas the cuts used in Zhang
and Küçükyavuz (2014) can be based on previously
generated cuts, and thus have higher rank.

While the work described in the previous para-
graphs fits within the cut-and-project framework, it
appears that our work is the first to consider using
such an approach for a problem with continuous
recourse variables.

4. Computational Experiments
In this section, our goal is to quantify the benefits
of scenario-based cut-and-project where the cutting
planes used are split cuts. We compare the root bound
improvement of this method over the bound obtained
by solving the LP relaxation of the extensive formu-
lation (1). Furthermore, we compare this approach to
a project-and-cut approach, where we add split cuts
to the master problem approximating the Benders
reformulation. We also study how these approaches
compare when solving SIP instances to optimality
in a branch-and-bound setting, both with and with-
out general-purpose cuts provided by a commercial
solver.

The problems we consider satisfy XLP = 8x ∈ �n
+

:
Ax ≥ b9 ⊆ Proj4x54Q

LP
k 5 for all k ∈ K, i.e., there always

exists a feasible recourse decision for every feasible
continuous solution to the first-stage constraints. This
is a slightly stronger property than relatively complete
recourse. Consequently, in our computational experi-
ments we do not need to consider “feasibility cuts”
and only need Benders cuts.

4.1. Computational Approach
Our primary implementation uses a rank-1 GMI
heuristic (called FEAS inDash and Goycoolea 2010) to

separate split cuts in each case. We discuss our adap-
tation of this heuristic in more detail in Section 4.2.
We compare the following decomposition methods
for solving the root node of (1):

• “BEN”: Solve the linear programming relaxation
using only Benders cuts.

• “SP”: Add split cuts in x and yk variables to sub-
problem k before generating Benders cuts from that
subproblem. This is what we call the scenario-based
cut-and-project approach.

• “MP”: Add split cuts based on the master LP
approximation of the Benders reformulation (in the
projected space).

We also compare these decomposition methods
to directly solving (1) with an MIP solver—we call
this “EXT.”

Pseudocode for the three decomposition methods is
given in Figure 3. In this figure, steps that are labeled
with [SP] and [MP] are executed only in the SP and
MP methods, respectively. In all of the decomposi-
tion methods, we work with a multicut version, i.e.,
for each scenario k, there is a variable zk denoting
the objective function contribution of the yk variables,
rather than just one variable for the second-stage
objective function. Each Benders cut is derived from
a single scenario (say k) in the variables x and zk. We
initialize the master problem LP (or master LP) to

min
{

cx+
∑

k∈K

pkzk2 Ax ≥ b1x ∈�n
+
1 z≥ zLB

}

1 (13)

where

zLB
k 2= min

x1y

{

dky2 Ax ≥ b1T kx+W ky ≥ hk1

x ∈�n
+
1 y ∈�t

+

}

1 for k ∈K0

Of course, in the first solution 4x̄1 z̄5 to the master
LP, z̄k = zLB

k . For the pure Benders algorithm BEN, at

1 Initialize Master LP as (13);
2 repeat
3 Solve current Master LP to obtain solution 4x̄1 z̄5;
4 for k ∈ K̄ do
5 Solve scenario k subproblem LP (10) to obtain

solution ȳk;
6 [SP] Search for split cuts that cuts off 4x̄1 ȳk5;
7 [SP] If violated split cuts are found, augment LP (10)

for scenario k and re-solve;
8 Form Benders cut (11) and add it to Master LP

if it is violated by 4x̄1 z̄k5;
9 end

10 [MP] Search for split cuts based on current master problem,
and add to master LP if violated by 4x̄1 z̄5;

11 until No violated cut added to Master LP or early termination
criterion detected;

Figure 3 Pseudocode of Decomposition Methods for Solving
the Root Node

Note. Parts of the code labeled with [SP] and [MP] are executed only for the
SP and MP methods, respectively.
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each subsequent iteration, for the current 4x̄1 z̄5 and
for each k ∈ K̄ ⊆ K, we solve the scenario subprob-
lem (10), and obtain a Benders cut as described after
Equation (10). We discuss how the set K̄ is chosen in
Section 4.3. Each violated Benders cut is added to the
master LP (we call this process “one round of cuts”)
that is resolved to update 4x̄1 z̄5. This process ends
when no Benders cut can be found, at which point the
objective value equals the LP relaxation value of (1).
In the SP method, after solving the scenario subprob-
lem as in BEN to obtain a solution ȳk, we invoke a
GMI separation heuristic once to find split cuts vio-
lated by 4x̄1 ȳk5. Note that these cuts have split-rank 1
as they are based on the original constraints. The con-
straints associated with the scenario k are augmented
with these cuts (thus T k1W k and hk are updated),
and the updated scenario subproblem is resolved. At
this point a strengthened Benders cut is generated,
and is added to the master problem if it is violated
by 4x̄1 z̄5. In the MP method, in each outer iteration
(where we solve the master LP to obtain 4x̄1 z̄5) we
generate violated (unstrengthened) Benders cuts as in
BEN; separately, we use a GMI heuristic to find vio-
lated split cuts derived from the current master prob-
lem constraints.

As we use a heuristic split cut separation proce-
dure, it may be difficult to conclude that one approach
yields stronger relaxations than the other. For exam-
ple, we may generate cuts based on different split
disjunctions in the SP and MP methods. We therefore
also consider the following methods where we exactly
separate split cuts (via cut generation LPs) based on
simple split sets of the form S = 8� < xj <�+19 involv-
ing a single variable:

• “SP-CGLP”: Instead of heuristic GMI cuts in the
SP method, generate split cuts for QIP

k and augment
scenario subproblems.

• “PR-CGLP”: Use the cut generation LP (7) with
a single split at a time to separate cuts in the 4x1 zk5
space that are valid for scenario k.

Specifically, SP-CGLP is the same as SP, except that
when searching for split cuts in the subproblem space,
we perform exact separation for each simple split set,
rather than using the GMI heuristic. Thus SP-CGLP
is an exact variant of SP, but for a fixed set of dis-
junctions. Aside from restricting to simple split dis-
junctions, PR-CGLP also differs from MP in that it
derives split cuts based on all Benders cuts derivable
from one scenario at a time, whereas MP derives split
cuts based on Benders cuts from multiple scenarios
simultaneously.

4.2. Separating Split Cuts
Our precise approach to finding split cuts for QIP

k that
cut off the solution 4x̄1 z̄1 ȳ5 is based on the FEAS
heuristic for rank-1 GMI cuts in Dash and Goycoolea

Qk
LP

y*

x̄ x

y

Figure 4 A Cut For QLP
k ∩ 8x = x̄9 Obtained From a Vertex of QLP

k

(2010). We assume that x̄ is a basic solution to Ax ≥ b
and some Benders cuts. For x̄, we solve (10) (in equal-
ity form) with the simplex method and get an optimal
basis B and associated solution 4ȳ1 s̄5, where s stands
for the slack variables in (10). Let 4yB1 sB5 stand for the
basic y1 s variables in this solution. Consider the IP

min
{

cx+ pkd
ky2 Ax ≥ b1T kx+W ky− s = hk1

y1 s ≥ 01x ∈�q
+ ×�n−q

+

}

0 (14)

The basic variables 4yB1 sB5 augmented with the basic x
variables contain a basic solution of the LP-relaxation
of (14) (see Dash and Goycoolea 2010). We search for a
basic solution from among these variables (if a basic x̄
is not available, we use the positive x variables as
a proxy for basic variables) by setting the remaining
variables to zero in the LP-relaxation of (14) and solv-
ing it. We take the new optimal basis, and generate
GMI cuts and keep those that are violated by 4x̄1 z̄1 ȳ5.
We depict this process in Figure 4, where the poly-
hedron represents the LP relaxation of (14), and, for
convenience we have dropped the constraints Ax ≥ b
and assume x ∈ �11y ∈ �1, and z = y. The thick ver-
tical line inside the polyhedron depicts W ky ≥ hk −

T kx̄, y ≥ 0. The aforementioned process corresponds
to looking for a vertex of (14) (marked by a circle) on
the face of (14) where ȳ lies, and generating a GMI
cut from this vertex denoted by a horizontal dashed
line (and based on the split set between the vertical
dashed lines). GMI cuts in MP are also obtained using
FEAS; we look for a subset of variables basic in x̄ that
define a basis of the original constraints Ax ≥ b.

4.3. Implementation Details
We solve all LPs and IPs using IBM ILOG CPLEX
12.4. All experiments are run using a single thread on
a Linux workstation with 2.33 GHz Intel Xeon CPUs
and 32 GB memory. When using our algorithms to
obtain root bounds only, we do not impose a time
limit. For all branch-and-cut runs, we set a time limit
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of four hours, and the relative MIP optimality toler-
ance to 0.1%. We solve the extensive formulation with
default CPLEX settings, and turn off presolve features
for the Benders-decomposition based algorithms.

We implement our branch-and-cut algorithm using
callback features of CPLEX. The formulation at the
end of root node consists of the initial constraints
and all Benders cuts found at the root node. Subse-
quently, we use the LazyConstraintCallback to add
lazy (Benders) cuts violated by an integer solution of
the current formulation (found by a CPLEX heuristic
or returned by the node LP), and the UserConstraint-
Callback to add user cuts cutting off fractional solu-
tions. We only generate user cuts at nodes with depth
up to 10 in the branch-and-bound tree. Moreover, at
every node except the root node, we generate at most
one round of user cuts. We add lazy cuts only if their
relative violation (the absolute violation of the cut
divided by the 2-norm of the cut coefficients) is at
least 10−5, whereas user cuts are added if their relative
violation is at least 10−4 at the root node and at least
10−3 at other nodes in the tree. For BEN and MP, only
unstrengthened Benders (user) cuts are added in the
tree, whereas strengthened Benders cuts are added
in SP. A flow chart of our branch-and-cut algorithm
is provided in the online supplement (available as
supplemental material at http://dx.doi.org/10.1287/
ijoc.2016.0717).

To reduce the root node solution time, we introduce
an early stopping condition. We stop adding Benders
cuts if the master LP objective value does not change
by 0.05% in five iterations. Moreover, we limit the
number of scenarios used to generate Benders cuts in
a round of cuts (equivalently, we let K̄ in Section 4.1
to a strict subset of K). We start with K̄ 2=K. For each
scenario, we record the ratio of the number of iter-
ations in which we successfully generate a violated
Benders cut to the number of times we attempt to
do so, and update this “success” ratio in every itera-
tion. If in some iteration, fewer than half the scenarios
return violated Benders cuts, in each subsequent iter-
ation (including in the non-root nodes) we only con-
sider the top 5% of scenarios (thus �K̄� = 0005�K�) by
success ratio. The success ratios are updated in each
iteration, so the selected scenarios can change over
iterations or cut-generating rounds.

4.4. Capacitated Facility Location Problem
Our first test problem “CAP” is a stochastic version of
the capacitated facility location problem, as described
by Louveaux (1986). In this problem, facility opening
decisions (yes or no) must be made before observing
the realizations of random customer demands. Then,
in the second stage the customer demands are frac-
tionally allocated to the open facilities. Let I be the
set of potential facilities, J be the set of customers,

and K be the set of scenarios. The first-stage facility
opening decision variables are denoted by x (xi = 1
if and only if the ith facility is opened), while the
second-stage recourse “flow” variables are denoted
by y (yij is the amount of the jth customer’s demand
satisfied by facility i). We denote the opening cost and
capacity of facility i, respectively, by fi and si, and the
cost of sending a unit of demand (or flow) from facil-
ity i to customer j by qij . The demand of customer j
under scenario k is denoted by �k

j . We use the follow-
ing formulation for this problem:

minimize
∑

i∈I

fixi +
1

�K�

∑

k∈K

∑

i∈I

∑

j∈J

qijy
k
ij (15a)

s.t.
∑

i∈I

yk
ij ≥ �k

j 1 j ∈J1 k ∈K1 (15b)

∑

j∈J

yk
ij ≤ sixi1 i ∈I1 k ∈K1 (15c)

∑

i∈I

sixi ≥ max
k∈K

∑

j∈J

�k
j 1 (15d)

x ∈ 80119�I�1 y ∈��I��J��K�

+ 0 (15e)

This formulation differs slightly from the “standard
formulation” in Louveaux (1986) where decision vari-
ables ȳk

ij = yk
ij/�

k
j give the fraction of customer i’s

demand served by facility j . We use the aforemen-
tioned formulation because there is no uncertainty in
the technology matrix (the coefficients multiplying xi in
the second-stage constraints). For each scenario, the
inequalities (15b) make sure that customer demand is
satisfied, while inequalities (15c) enforce the condition
that customers can only be served by open facilities.
Finally, the inequalities (15d) enforce relatively com-
plete recourse by ensuring that the total capacity of
open facilities is sufficient to satisfy the total customer
demand in each scenario.

We take the deterministic “CAP” instances from J. E.
Beasley’s OR-Library (Beasley 1990) that have 50 cus-
tomers and 25–50 potential facilities, and create
stochastic instances from them. Let �̄j be the determin-
istic demand of customer j in the data. We construct
the demands of the stochastic instances by sampling
250, 500, or 11500 scenarios from a normal distribution
with mean taken from the corresponding determinis-
tic instance. We take for each j ∈ J, �j = �̄j , and �j ∈

U4001�̄j1003�̄j5, where U represents uniform distribu-
tion and generate stochastic demands �j ∼N4�j1�j5.

Computational Experiments with the Root Bound. We
first investigate the gap given by solving the root
node of the master problem by the methods BEN,
SP, MP, SP-CGLP, and PR-CGLP. Table 1 reports the
average percentage root gap (calculated as 4�IP −�LP5 ·
100/�IP where �IP denotes the optimal value of the
MIP and �LP denotes the master LP bound) obtained
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Table 1 Average Percentage Root Gap Obtained by Different Methods
for CAP Instances with 250 Scenarios

CAP # BEN MP PR-CGLP SP SP-CGLP

101–104 22040 20074 18000 0007 0011
111–114 8072 8001 7079 0041 0022
121–124 18092 18026 16032 0099 1015
131–134 25023 24018 21056 0030 1046
Mean 18082 17080 15092 0044 0074

Note. At each “CAP #” row, the averages of four instances are reported.

by each of the aforementioned methods over sets
of CAP instances having similar properties. We only
report the case for 250 scenarios; the results with 500
and 1,500 scenarios are very similar.

We find that PR-CGLP yields a modest improve-
ment in gap over BEN. On the other hand, SP-CGLP
yields a dramatic improvement over PR-CGLP, indi-
cating that the difference in the strength of the relax-
ations suggested by Lemma 2 can sometimes be very
large. Finally, SP yields a root gap similar to SP-
CGLP. The MP heuristic does slightly worse than PR-
CGLP. These results indicate that for this problem
class, using split cuts in the extended space has far
more impact on the root bound than using split cuts
in the projected space. In the remainder of the paper,
we do not experiment with SP-CGLP and PR-CGLP
as these are computationally very expensive (they do
not always terminate in a day).

Computational Experiments with the Branch-and-Bound
Tree. We next compare the different branch-and-cut
methods defined earlier. As a result of the early stop-
ping conditions for cut generation used in branch
and bound, we may obtain different root gaps than
those in Table 1. In addition, after adding Benders
cuts to the master problem formulation and start-
ing the branch-and-bound phase, at the root node
Cplex adds its own cuts that can potentially further
improve the LP relaxation. In Table 2, we report the
root gaps obtained when our early stopping condi-
tions are in effect, and with CPLEX cuts turned off
and on. For these instances, CPLEX cuts yield a very
slight improvement in the root gap. Also, the loss
incurred due to stopping early is not significant.

To better understand the effect of the GMI cuts as
used in either the extended space (SP) or projected
space (MP), we first test our branch-and-cut algo-
rithms with CPLEX cuts turned off. We leave CPLEX
cuts turned on for the extensive formulation. Table 3
presents a summary of the branch-and-cut results
for CAP instances with 250, 500, and 1,500 scenarios
obtained with EXT, BEN, SP, and MP. We report geo-
metric means of solution times, where the times are
truncated at the four hour time limit. The number of
instances that are not solved by a method is reported
in parentheses in the time column. If all instances in a

Table 2 Effect of CPLEX Cuts on Average Percentage Root Gap for
CAP Instances with 250 Scenarios

Without CPLEX cuts With CPLEX cuts

CAP # BEN MP SP BEN MP SP

101–104 22040 21058 0007 16091 16069 0007
111–114 8072 8028 0041 7084 7079 0041
121–124 18097 20004 1002 17099 19057 1002
131–134 25024 25030 0033 20015 21068 0033
Mean 18083 18080 0046 15072 16043 0046

Note. At each “CAP #” row, the averages of four instances are reported.

set are not solved within the time limit, the reported
mean time is a lower bound on the time to solve
to optimality. We also report the arithmetic average
optimality gap over the instances after the time limit,
where gap is calculated as (UB-LB) × 100/UB where
UB and LB are the upper and lower bounds reported
by the solver at the end of the run. Instances that were
solved to optimality are included as a zero in calcu-
lating this average.

EXT is able to solve to optimality many of the in-
stances with 250 scenarios. It fails to solve a num-
ber of 500 scenario instances but terminates with a
small optimality gap. However, for the 1,500 sce-
nario instances, the optimality gaps are quite large.
On the other hand, BEN and MP fail to solve any
of the instances, and yield large optimality gaps after
the time limit. This is not surprising given the results
in Table 2, which indicate that BEN and MP yield
weak LP relaxations. Finally, we observe that the SP
algorithm is able to solve most of these instances in
the time limit, and does so significantly faster than
the extensive formulation. When it does not solve
within the time limit, the optimality gaps are much
smaller than the other methods, especially for the
larger instances. These results indicate that on this
problem class, adding split cuts in the extended space
rather than in the projected space is essential. We
obtain very similar results when we turn on CPLEX
cuts, and so provide that summary table in the Online
Supplement.

4.5. Stochastic Network Interdiction Problem
The second test problem is the stochastic network
interdiction problem (SNIP) described in Pan and
Morton (2008). In this problem, the interdictor installs
sensors to some of the arcs of a given network in
order to maximize the expected probability of catch-
ing an intruder. Let N and A denote the set of nodes
and the set of arcs of the network and let D ⊆ A
be the subset of arcs on which sensors are allowed
to be placed. In the first stage the interdictor installs
the sensors knowing the probability of the intruder
avoiding detection with and without a sensor on each
arc (denoted by rij and qij ). A scenario k corresponds
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Table 3 Comparison of Algorithms for CAP Instances When CPLEX Cuts Are Off

Avg time (# unsolved) Avg gap (%)

K CAP # EXT BEN MP SP EXT BEN MP SP

250 101–104 258 (4) (4) 64 0000 14093 15010 0000
111–114 21359 (4) (4) 586 0000 8002 8012 0000
121–124 41718(2) (4) (4) 11690 0043 16011 16047 0000
131–134 41151(1) (4) (4) 477 0019 22022 23023 0000

Mean 11858 — — 417 0016 15032 15073 0000
500 101–104 11171 (4) (4) 175 0000 16075 16037 0000

111–114 101787(3) (4) (4) 21967(1) 2000 8051 8000 0005
121–124 101935(3) (4) (4) 61442(2) 3012 16039 18000 0013
131–134 91512(3) (4) (4) 11239 1044 22092 24001 0000

Mean 61020 — — 11426 1064 16014 16060 0004
1,500 101–104 81583(1) (4) (4) 815 3076 19010 18030 0000

111–114 (4) (4) (4) 71813(2) 15074 9014 8036 0045
121–124 (4) (4) (4) 101182(3) 22023 19008 19088 0069
131–134 (4) (4) (4) 71944 44015 25028 26072 0000

Mean 121653 — — 41764 21047 18015 18032 0028

Notes. Times are given in seconds. At each (K , CAP #) row, the averages of four instances are reported.

to the origin and destination of the intruder denoted
by sk and tk and the realization probability of the
scenario is denoted by pk. Cost of installing a sen-
sor on arc 4i1 j5 ∈ D is denoted by cij and b is total
budget of the interdictor. In the second stage the
intruder chooses a maximum-reliability path from sk

to tk that maximizes the probability of avoiding detec-
tion. Lastly, �k

j is the value of a maximum-reliability
path from j to tk when no sensors are placed; �k

j can
be calculated by solving a shortest path problem. First
stage binary variables xij denote if a sensor is installed
on arc 4i1 j5. Second stage variables �k

i give the prob-
ability that the evader can travel from i to tk unde-
tected. The formulation is as follows:

minimize
∑

k∈K

pk�
k
sk

s.t.
∑

4i1 j5∈D

cijxij ≤ b1

�k
tk = 11 k ∈K1

�k
i − qij�

k
j ≥ 01 4i1 j5 ∈D1 k ∈K1

�k
i − rij�

k
j ≥ 01 4i1 j5 ∈A\D1 k ∈K1

�k
i − rij�

k
j ≥ −4rij − qij5�

k
j xij1

4i1 j5 ∈D1 k ∈K1

�k
i ≥ 01 i ∈N1 k ∈K1 x ∈ 80119�D�0

The first constraint ensures that the total cost of
installing sensors does not exceed the budget b. The
remaining constraints ensure that �k

i is at least the
probability that the evader can travel from i to j unde-
tected times the probability that the evader can travel
from j to tk undetected.

All instances have 456 scenarios, contain 320 binary
first-stage decision variables, and use the same net-
work consisted of 783 nodes and 2,586 arcs. We focus
our experiments on the more difficult instances that
we call snipno = 3 and snipno = 4. These are the
instances reported in Pan and Morton (2008, Tables 3
and 4), where time is measured in minutes and MIPs
are solved to 1% optimality.

Computational Experiments with the Root Bound.
Table 4 reports the average percentage root gap ob-
tained with BEN, MP, and SP over sets of SNIP in-
stances having similar properties (the early stopping
condition is turned off). We observe that both MP and
SP yield significantly smaller gaps than BEN, but SP
does not close as much gap as on the CAP instances.

We do not report PR-CGLP and SP-CGLP gaps for
SNIP instances as these methods take too much time.
However, preliminary results (from lower bounds at
the end of one day of computing time for some
instances) indicate that PR-CGLP yields gaps sim-
ilar to or smaller than SP; e.g., for snipno = 3,

Table 4 Average Percentage Root Gap Obtained by Different Methods
for SNIP Instances

snipno = 3 snipno = 4

Budget BEN MP SP BEN MP SP

30 2205 1305 709 2501 1307 803
40 2602 1800 1103 2804 1700 1104
50 2705 1805 1200 3005 1907 1302
60 2802 1901 1205 3201 2203 1407
70 2809 2004 1206 3206 2308 1309
80 3009 2109 1405 3303 2406 1403
90 3301 2306 1706 3602 2902 1804
Mean 2802 1903 1206 3102 2105 1305

Note. At each “Budget” row, the averages of five instances are reported.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

10
4.

18
9.

6]
 o

n 
12

 D
ec

em
be

r 
20

16
, a

t 0
6:

32
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Bodur et al.: Strengthened Benders Cuts
INFORMS Journal on Computing 29(1), pp. 77–91, © 2016 INFORMS 89

Table 5 Effect of CPLEX Cuts on Average Percentage Root Gap
Obtained by Different Methods for SNIP Instances

Without With
CPLEX cuts CPLEX cuts

snipno Budget BEN MP SP BEN MP SP

3 30 2302 1303 1207 5018 4064 3025
40 2702 1700 1507 7037 6047 5050
50 2708 1803 1605 6058 6015 5027
60 2804 1805 1608 6012 5046 4098
70 2900 1902 1705 5042 4082 4031
80 3102 2007 1803 6093 6007 5018
90 3301 2308 2009 8015 7085 7026

Mean 2806 1807 1609 6053 5092 5011
4 30 2508 1402 1305 4097 4075 3008

40 2902 1707 1601 7049 6039 4042
50 3104 1903 1800 8013 6071 5053
60 3205 2200 1904 8011 7084 6014
70 3209 2205 1900 6038 6029 4070
80 3304 2307 1806 4054 6021 3002
90 3608 2607 2204 7024 9019 5067

Mean 3107 2009 1801 6069 6077 4065

Note. At each (Snipno, Budget) row, the averages of five instances are
reported.

PR-CGLP gaps range between 10.0 and 15.8%. Thus,
project-and-cut seems as effective as cut-and-project
for these instances.

Computational Experiments with the Branch-and-Bound
Tree. We next compare the different branch-and-cut
methods defined earlier. In Table 5, we report the root
gaps obtained when CPLEX cuts are turned off and
on (and with the early stopping conditions turned
on). In the absence of CPLEX cuts, MP and SP gaps
are close to each other and both are much better
than BEN gaps, though the difference between MP
and SP root gaps is smaller than in the Table 4.

Table 6 Comparison of Algorithms for SNIP Instances Without CPLEX Cuts

Avg time (# unsolved) Avg gap (%)

no b EXT BEN MP SP EXT BEN MP SP

3 30 (5) 639 487 442 1800 0000 0000 0000
40 (5) 71915(3) 61265(1) 21253 2500 0067 0017 0000
50 (5) 81626(3) 51339(1) 21328 2601 1027 0047 0000
60 (5) 101599(4) 61885(2) 21425(1) 2307 2038 1003 0014
70 (5) — (5) — (5) 41435(1) 2701 3090 1066 0022
80 (5) — (5) 111709(3) 101096(4) 2809 3094 2044 0096
90 (5) — (5) — (5) 131283(4) 3007 6014 4016 1076

Mean — 71536 51977 31188 2507 2061 1042 0044
4 30 (5) 601 485 485 2204 0000 0000 0000

40 (5) 11802 21312 774 2507 0000 0000 0000
50 (5) 31442(1) 31579 11252 2900 0039 0000 0000
60 (5) 41917(1) 61494(2) 11441 3003 0054 0061 0000
70 (5) 61815(2) 121621(3) 11097 3900 1021 1059 0000
80 (5) 41503 101494(2) 796 4906 0000 1043 0000
90 (5) 51948(2) 113376(4) 11630 5807 1008 5070 0000

Mean — 31188 41639 995 3604 0046 1033 0000

Notes. Times are in seconds. At each (snipno = “no,” Budget = “b”) row, the averages of five instances are reported.

As also observed in Table 4, applying GMI cuts
in both extended and projected spaces is beneficial
for SNIP instances. More interestingly, when CPLEX
cuts are also applied, all algorithms obtained simi-
lar root gaps, which are all much smaller than the
ones obtained when CPLEX cuts are off. Neverthe-
less, SP gives better bounds than MP with and with-
out CPLEX cuts. These results suggest that, the ability
to use information from multiple scenarios to derive
cuts in the Benders reformulation (as CPLEX cuts do)
may be important for achieving improved bounds in
this problem.

Next, in Table 6 we present a summary of the
branch-and-cut results for SNIP instances. To under-
stand the effect of GMI cuts, we first turn CPLEX cuts
off in all methods except the extensive formulation.
We provide the number of unsolved instances (if there
are any) for each category in parentheses in the time
column.

Compared to CAP results, for the SNIP instances,
the role of EXT and BEN is reversed: EXT is unable
to solve any of the instances, and yields a very large
average optimality gap after the time limit, whereas
BEN is able to solve some of the instances. This is
caused by the relatively larger size of these instances,
which prevents EXT from even being able to fin-
ish processing the root node within the time limit,
whereas BEN is able to process a large number of
nodes. MP and SP perform significantly better than
BEN. They solve more instances and end up with
smaller optimality gaps for the unsolved instances.
SP is able to solve more instances, including all
of snipno = 4 instances, and converges significantly
faster than MP does.
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Table 7 Comparison of Algorithms for SNIP Instances with CPLEX Cuts

Avg time (# unsolved) Avg gap (%)

no b EXT BEN MP SP EXT BEN MP SP

3 30 (5) 183 280 415 1800 0 0 0
40 (5) 784 11739 830 2500 0 0 0
50 (5) 512 11134 867 2601 0 0 0
60 (5) 906 11666 11121 2307 0 0 0
70 (5) 11402 11891 11389 2701 0 0 0
80 (5) 11938 41729(2) 11579 2809 0 0045 0
90 (5) 41794 91214(3) 41050 3007 0 0060 0

Mean — 980 11855 11169 2507 0 0015 0
4 30 (5) 183 304 443 2204 0 0 0

40 (5) 266 668 661 2507 0 0 0
50 (5) 429 11161 720 2900 0 0 0
60 (5) 468 11697 799 3003 0 0 0
70 (5) 499 21198 934 3900 0 0 0
80 (5) 214 11815 485 4906 0 0 0
90 (5) 327 81859(3) 533 5807 0 1055 0

Mean — 320 11460 633 3604 0 0022 0

Notes. Times are in seconds. At each (snipno = “no,” Budget = “b”) row, the averages of five instances are reported.

Moreover, in Table 7 we compare the four methods
when CPLEX cuts are turned on. BEN and SP solve
all of the instances while MP fails to solve a few
instances but ends up with small optimality gaps.
In terms of solution time, for snipno = 4 instances,
which are easier than snipno = 3 instances, BEN per-
forms better than SP. However, SP converges slightly
faster in the more difficult large capacity instances
of snipno = 3. The main reason that BEN performs
well is that CPLEX cuts dramatically improve the
root bounds. We note that to obtain this improvement
while using CPLEX, it is essential to solve the mas-
ter LP outside of the branch-and-cut algorithm, and
include the Benders cuts as part of the formulation
passed to the branch-and-cut algorithm. If we add root
Benders cuts via cut callback routines, all algorithms
worsen, and BEN and MP are much worse; they fail
to solve the majority of the instances and on average
their solution times are larger than the solution times
of SP by a factor of 3.6 and 4.8 for snipno = 3 and
snipno = 4 instances, respectively.

To summarize, for SNIP instances deriving split
cuts in the extended space and the projected space
are both useful. In the absence of CPLEX cuts, SP
is the best method. However, as CPLEX cuts reduce
root gaps of all our branch-and-cut algorithms to
almost the same level, the results with CPLEX cuts are
mixed. SP is a computationally intensive method, and
the extra time spent solving the progressively harder
subproblems and generating cuts is not compensated
by the gap improvement for relatively small or easy
instances.

Finally, we remark that our results with general
purpose cuts are comparable to those obtained in
Pan and Morton (2008) using problem-specific valid

inequalities (even though they solve MIPs to 1% opti-
mality in Pan and Morton (2008), unlike our 0.1%
tolerance).

5. Concluding Remarks
We analyzed two approaches for using integrality
constraints to improve the LP relaxation within a
Benders decomposition algorithm. In project-and-cut,
Benders cuts are used to approximate the Benders
reformulation, and then integrality constraints are
used to derive cuts directly for that formulation.
In cut-and-project, integrality constraints are used to
derive cuts in the extended formulation, and this
improved relaxation is projected via Benders cuts. We
found that when using split cuts, these approaches are
equivalent for a single split, but cut-and-project can
yield stronger relaxations when using multiple splits.
In addition, our computational results on a stochas-
tic facility location problem indicated that this differ-
ence can be very significant. On the other hand, we
observed that for a stochastic integer program, cuts
derived directly from the Benders reformulation can
be stronger due to the ability to use information from
multiple scenarios. Our computational results on a
second test problem indicated that this effect can also
be important.

Our result on the strength of split cuts in a pro-
jected versus extended space are applicable to MIP in
general. An interesting idea raised by this result is to
consider using or building extended formulations of a
MIP problem for the purpose of obtaining a stronger
relaxation using a fixed class of valid inequalities or
a fixed procedure for separating valid inequalities. In
stochastic integer programming, an interesting future
direction is to investigate the use of problem-specific
cuts within the cut-and-project framework.
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