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Abstract We propose two new Lagrangian dual problems for chance-constrained
stochastic programs based on relaxing nonanticipativity constraints. We compare
the strength of the proposed dual bounds and demonstrate that they are superior to
the bound obtained from the continuous relaxation of a standard mixed-integer pro-
gramming (MIP) formulation. For a given dual solution, the associated Lagrangian
relaxation bounds can be calculated by solving a set of single scenario subproblems and
then solving a single knapsack problem. We also derive two new primal MIP formu-
lations and demonstrate that for chance-constrained linear programs, the continuous
relaxations of these formulations yield bounds equal to the proposed dual bounds. We
propose a new heuristicmethod and two new exact algorithms based on these duals and
formulations. The first exact algorithm applies to chance-constrained binary programs,
and uses either of the proposed dual bounds in concertwith cuts that eliminate solutions
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found by the subproblems. The second exact method is a branch-and-cut algorithm
for solving either of the primal formulations. Our computational results indicate that
the proposed dual bounds and heuristic solutions can be obtained efficiently, and the
gaps between the best dual bounds and the heuristic solutions are small.

Mathematics Subject Classification 90C11 · 90C15 · 90C57 · 49M29

1 Introduction

We consider chance-constrained stochastic programs (CCSPs) of the form

v∗ = min { f (x) : x ∈ S, P[x ∈ X (ξ)] ≥ 1 − ε} . (1)

We make the following assumptions throughout this paper: (i) the random vector ξ

has a finite support, i.e., � = {ξ1, . . . , ξ N }, where each i ∈ N := {1, . . . , N } is
referred to as a scenario; (ii) f : Rn → R is a linear function; i.e., f (x) = c�x (if
f (x) is nonlinear, we can introduce a new variable y, add a new constraint f (x) ≤ y
into S and change the objective to minimize y); (iii) X (ξ i ) ⊆ S for each i ∈ N ;
otherwise, we can replace X (ξ i ) by X (ξ i ) ∩ S which yields an equivalent problem;
(iv) the feasible region is nonempty. We can then rewrite (1) as

v∗ = min

{
c�x : x ∈ S,

∑
i∈N

pi I(x ∈ Xi ) ≥ 1 − ε

}
, (2)

where S is a mixed-integer set (i.e., S ⊆ R
n−r × Z

r with 0 ≤ r ≤ n), Xi := X (ξ i ),
I(·) is the indicator function and pi is the probability mass associated with scenario
i . Using a binary variable zi to model the indicator function for each scenario i , we
reformulate (1) as

v∗ = min
{
c�x : x ∈ S, zi = I(x ∈ Xi ), i ∈ N , z ∈ Z

}
, (3)

where

Z :=
{
z ∈ {0, 1}N :

∑
i∈N

pi zi ≥ 1 − ε

}
.

We assume throughout this paper that S, and therefore Xi , are compact sets for all
i ∈ N . Our results can be directly generalized to the unbounded case when the sets
conv(Xi ) for all i ∈ N share the same recession cone.

CCSPs were first studied in [10,11]. Subsequently, significant research has been
carried out on structural and algorithmic issues for CCSPs under various distributional
settings [14,15,18,29,36], as well as on sampled approximations [5,6,17,25,28]. A
CCSP with a finite number of scenarios can be formulated as a large-scale mixed-
integer program (MIP), by introducing a binary variable for each individual scenario
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Nonanticipative duality for chance-constrained programs

and adding big-M inequalities into the formulation. However, the natural MIP formu-
lation based on big-M inequalities often has a weak linear programming relaxation [7].
Motivated by this drawback, there has been significant recent works investigating the
use of MIP techniques for solving CCSPs having a finite number of scenarios. In par-
ticular, the mixing structure of CCSPs has been studied in [20,24,26]. By exploring
special combinatorial structures of CCSPs, [21,34,35] introduced problem formula-
tions without the binary scenario variables. Chance-constrained formulations have
also been proposed for two-stage [23] and multi-stage settings [38].

In this paper we introduce two new Lagrangian relaxation techniques for obtaining
lower bounds for the CCSPs (3). Inspired by the associated Lagrangian dual prob-
lems, we also introduce new MIP formulations of (3) that yield stronger relaxations
than existing formulations. The Lagrangian relaxations we construct are obtained by
variable splitting: creating multiple copies of the variables x , which are constrained
to be equal to each other, and then constructing a relaxation in which these “nonantic-
ipativity constraints” are relaxed. In stochastic programming this technique is known
as dual decomposition, and was first introduced by [31], and used in [8] for obtain-
ing strong relaxations of two-stage stochastic integer programs. See also [16,32] for
more results on dual decomposition in the two-stage stochastic programming. Some
Lagrangian relaxation approaches forCCSPs have been investigated recently. In [3] the
original problem constraints defining Xi are relaxed within an augmented Lagrangian
relaxation framework. In [15], auxiliary variables are introduced to separate the deter-
ministic and probabilistic constraints, and the deterministic constraints are relaxed.
The work in [36] exploits decomposable structure of the deterministic constraints
for a specific class of CCSPs. Finally, in [37], both the nonanticipativity constraints
and the knapsack constraint

∑
i∈N pi zi ≥ 1 − ε are relaxed. In contrast, we do not

relax the knapsack constraint or the original problem constraints and directly work on
the original formulation (3), leading to relaxation bounds that are better than exist-
ing alternatives. Somewhat surprisingly, even though the knapsack constraint—which
links scenarios together—is not relaxed, the majority of the work required to solve
our proposed Lagrangian relaxation problems can be still decomposed by scenarios.

The remainder of the paper is organized as follows. In Sect. 2, we discuss three valid
lower bounds, which can be obtained by continuous relaxation, quantile bounding and
scenario grouping. We then provide two new Lagrangian dual formulations based
on relaxing the nonanticipativity constraints in Sect. 3. In Sect. 4, we compare these
bounds with the basic lower bounds introduced in Sect. 2. We derive new primal
formulations in Sect. 5 that are related to the dual formulations from Sect. 3. In Sect. 6
we present a heuristic and two new exact algorithms to solve CCSPs. Finally, we
devote Sect. 7 to computational illustration of the lower bounds and performances of
the proposed algorithms and make concluding remarks in Sect. 8.

2 Basic lower bounds

We first present three different lower bounds for the CCSPs (3). The first two are
known results while the third bound presented in Sect. 2.3 is new.
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2.1 Continuous relaxation

Assume that for each scenario i , Xi is described by an inequality system Gi (x) ≤ 0
with a mapping Gi : S 
→ R

mi . Problem (3) can then be modeled as the following
MIP:

v∗ = min
x,z

{
c�x : x ∈ S, Gi (x) ≤ Mi (1 − zi ), ∀i ∈ N , z ∈ Z

}
, (4)

where Mi is a vector of big-M parameters such that Mi j gives a valid upper bound of
Gi j (x) for all feasible x in (2), that is, Mi j ≥ max{Gi j (x) : x ∈ S,

∑
i∈N pi I(x ∈

Xi ) ≥ 1−ε} for each j = 1, 2, . . . ,mi . It is impractical to compute the tightest possi-
ble upper bound, since it involves solving another CCSP. Therefore, computationally
tractable techniques for deriving upper bounds have been investigated. For example,
one may begin by choosing Mi j ≥ sup{Gi j (x) : x ∈ S∩Xi } for all j = 1, 2, . . . ,mi .
This simple bound could then be strengthened using a coefficient strengthening that
considers more of the feasible region of (4) as in [30,35] (see Sect. 7). We assume
that whenever a strengthened big-M parameter M ′

i j < Mi j is obtained, we include the
valid inequality Gi j (x) ≤ M ′

i j in S, so that S ⊆ {x ∈ R
n : Gi (x) ≤ M ′

i , ∀i ∈ N }.
We define vC (M) to be the optimal objective value of the relaxation of (4) in which
the integrality constraints on the z variables are relaxed (but the integrality constraints
on x , if any, are not relaxed). We denote by vC (M) the relaxation obtained by also
relaxing integrality constraints on x . Clearly, we have

vC (M) ≤ vC (M) ≤ v∗.

2.2 Quantile bound

Another lower bound for problem (3) is the so-called quantile bound [35]. We first
calculate for each i ∈ N ,

ηi = min
x

{
c�x : x ∈ Xi

}
.

We then sort these values to obtain a permutation σ of N such that ησ1 ≥ · · · ≥ ησN .
The quantile bound is then defined as vQ = ησq , where q = min{k ∈ N : ∑k

i=1 pσi >

ε}. Then clearly

vQ ≤ v∗

because at least one scenario in the scenario set {σ1, . . . , σq} must be satisfied in a
feasible solution.

2.3 Scenario grouping based lower bound

We partition the scenarios N into K < N disjoint subsets N j , j ∈ K = {1, . . . , K }
where

∑K
j=1 |N j | = N . For each j ∈ K, we define z̃ j = 1 if zi = 1 for all the
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scenarios i ∈ N j and 0 otherwise (i.e., z̃ j = min{zi : i ∈ N j }). For each j ∈ K, we
define q j = mini∈N j pi . We then define the following scenario grouping model:

vG = min

⎧⎨
⎩c�x : x ∈ S, z̃ j = I

(
x ∈

⋂
i∈N j

X i
)
, j ∈ K,

∑
j∈K

q j z̃ j ≥
∑
j∈K

q j − ε

⎫⎬
⎭ .

(5)

Proposition 1 The scenario grouping model (5) is a relaxation of the CCSP (3), i.e.,
vG ≤ v∗.

Proof Let (x, z) be any feasible solution to (3) and let z̃ j = min{zi : i ∈ N j } for
each j ∈ K. We show that (z̃, x) is feasible to (5). By construction it holds that
z̃ j = I(x ∈ ⋂

i∈N j
X i ) for each j ∈ K. We first establish the following inequality for

each j ∈ K:

q j z̃ j ≥
∑
i∈N j

pi zi −
⎛
⎝ ∑

i∈N j

pi − q j

⎞
⎠ . (6)

Indeed, if z̃ j = 0 this implies that zi = 0 for some i ∈ N j , and thus
∑

i∈N j
pi zi ≤∑

i∈N j
pi − q j as required. On the other hand, if z̃ j = 1 this implies that zi = 1 for

all i ∈ N j , and (6) follows. Now, summing (6) over all j ∈ K yields

∑
j∈K

q j z̃ j ≥
∑
j∈K

∑
i∈N j

pi zi −
∑
j∈K

∑
i∈N j

pi +
∑
j∈K

q j ≥ 1 − ε − 1 +
∑
j∈K

q j ,

which establishes the result. 
�
If we scale the knapsack inequality in (5) by (

∑
j∈K q j )

−1, this problem is again a
CCSP, but with K < N scenarios. Thus, any technique for obtaining a lower bound of
a CCSP can also be applied to this relaxation. In particular, the quantile bound may be
applied, and the resulting scenario grouping based quantile bound may be better than
the original quantile bound (see Sect. 7 for an illustration). The dual bounds that we
derive in the following sections may also be applied to a grouping-based relaxation.

3 Lagrangian dual bounds

We next introduce two Lagrangian dual problems associated with the CCSPs (3)
obtained by relaxing nonanticipativity constraints. We use the following standard
result (cf. [22,27]) on a primal characterization of the Lagrangian dual.

Theorem 1 Consider amathematical programmin{ f (x) : H(x) ≤ h, x ∈ X}, where
f, H are convex functions and X is compact, and let

L∗ := sup
λ≥0

{
min
x

{
f (x) + λ�(H(x) − h) : x ∈ X

}}
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be the Lagrangian dual value. Then

L∗ = inf { f (x) : x ∈ conv(X), H(x) ≤ h} ,

where conv(X) denotes the convex hull of the set X.

3.1 Basic nonanticipative dual

By making copies of the decision variables x , problem (3) can be reformulated as

v∗ = min
x,z

∑
i∈N

pi c
�xi , (7a)

s.t.
∑
i∈N

pi Hi x
i = h, (7b)

zi = I(xi ∈ Xi ), i ∈ N , (7c)

z ∈ Z , (7d)

xi ∈ S, i ∈ N , (7e)

where (7b) enforce the nonanticipativity constraints x1 = · · · = xN . The Lagrangian
dual problemobtained by dualizing these nonanticipativity constraintswith dual vector
λ can be written as:

vLD1 = max
λ

{
L1(λ) − λ�h

}
, (8)

where

L1(λ) := min
x,z

{∑
i∈N

pi (c
�xi + λ�Hi x

i ) : (7c)−(7e)

}
. (9)

Next, observe that problem (9) is equivalent to minimizing ψ(z) over z ∈ Z , where

ψ(z) := min
x

{∑
i∈N

pi (c
�xi + λ�Hi x

i ) : (7c), (7e)

}
.

This problem decomposes by scenario. Let

θi (λ) = min
x

{
c�x + λ�Hi x : x ∈ S

}
(10)

and
ζi (λ) = min

x

{
c�x + λ�Hi x : x ∈ Xi

}
. (11)

Note that the feasible region of ζi (λ) is included in that of θi (λ), so we have that
ζi (λ) ≥ θi (λ) for all i ∈ N . By compactness of S, both θ and ζ are finite valued for
all λ. Then, we have
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ψ(z) =
∑
i∈N

pi
(
θi (λ)(1 − zi ) + ζi (λ)zi

) =
∑
i∈N

piθi (λ) +
∑
i∈N

pi
(
ζi (λ) − θi (λ)

)
zi

and so

L1(λ) =
∑
i∈N

piθi (λ) + min
z

{∑
i∈N

pi (ζi (λ) − θi (λ))zi : z ∈ Z

}
. (12)

Thus, for a fixed λ, the Lagrangian relaxation value L1(λ) − λ�h can be calculated
by first calculating the values θi (λ) and ζi (λ) by solving (10) and (11) separately for
each i ∈ N , and then solving a single-row knapsack problem.

We close this subsection by noting that the dual problem (8) can be interpreted as
a stochastic program with a mean-risk objective function, see the online supplement.

3.2 Quantile based Lagrangian dual

The quantile bound in Sect. 2.2 can be interpreted as a relaxation obtained by creating
a copy xi of the variables x for each i ∈ N , as in the reformulation (7), but then instead
of using the weighted average of the objective values of these copies, the maximum
objective function value among the enforced scenarios is used. This motivates the
following alternative reformulation of (3):

v∗ = min
x,y,z

y, (13a)

s.t. c�xi ≤ y, i ∈ N , (13b)∑
i∈N

pi Hi x
i = h, (13c)

zi = I(xi ∈ Xi ), i ∈ N , (13d)

z ∈ Z , (13e)

xi ∈ S, i ∈ N , (13f)

where (13c)–(13f) are just a restatement of (7b)–(7e). For a fixed y ∈ R, we further
define the problem:

g(y) := y + min
x,z

{0 : (13b)−(13f)} . (14)

Clearly, g(y) = y if (13b)–(13f) is feasible for this fixed y value, otherwise (14) is
infeasible, and we use the convention g(y) = +∞ in this case. Then (13) can be
formulated as:

v∗ = min
y

{g(y) : y ∈ R} .

Next, for a fixed y ∈ R, let

R(y) =
{
{xi , zi }i∈N : (13b), (13d)−(13f)

}
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be the set of feasible solutions to (13) in which the nonanticipativity constraints (13c)
are relaxed, and the variable y is fixed. Also, define

L2(λ, y) = min
x,z

{∑
i∈N

piλ
�Hi x

i : {xi , zi }i∈N ∈ R(y)

}
,

and finally
ω2(y) = y + max

λ

{L2(λ, y) − λ�h
}
. (15)

We use the notation ω2(y) = +∞ to indicate that the maximization problem in (15)
is unbounded. In fact, as the following proposition shows, the maximization problem
either has an optimal objective value that equals zero or is unbounded.

Proposition 2 There exists ȳ ∈ R such that

ω2(y) =
{

y, if y ≥ ȳ,
∞, if y < ȳ.

(16)

Proof By Theorem 1, ω2(y) = y + min{0 : {xi , zi }i∈N ∈ T (y)} where T (y) =
{{xi , zi }i∈N : (13c), {xi , zi }i∈N ∈ conv(R(y))}. Thus, ω2(y) = y if T (y) �= ∅ and
ω2(y) = ∞, otherwise. Next, for y large enough, any feasible solution to (3) can be
used to construct a feasible point in T (y) (just set all xi equal to x), and so for y
large enough ω2(y) = y. In addition, since the set S is compact, it follows that for y
small enough the set R(y) is empty, and hence T (y) is empty. The result then follows
because T (y1) ⊆ T (y2) whenever y1 ≤ y2. 
�

We now define the quantile-based Lagrangian dual problem as:

vLD2 = min
y

{ω2(y) : y ∈ R} = min
y

{y : ω2(y) = y} . (17)

Theorem 2 The quantile-based Lagrangian dual problem (17) is a relaxation of the
CCSP (3), i.e., vLD2 ≤ v∗.

Proof This follows because ω2(y) ≤ g(y) for all y ∈ R. 
�

We next discuss the calculation of vLD2 . First, for a given λ and y, L2(λ, y) can be
calculated by solving for each i ∈ N ,

θ̄i (λ, y) := min
x

{
λ�Hi x : c�x ≤ y, x ∈ S

}

and

ζ̄i (λ, y) := min
x

{
λ�Hi x : c�x ≤ y, x ∈ Xi

}
.
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Then,

L2(λ, y) =
∑
i∈N

pi θ̄i (λ, y) + min
z

{∑
i∈N

pi
(
ζ̄i (λ, y) − θ̄i (λ, y)

)
zi : z ∈ Z

}
.

The above characterization leads to a bisection procedure to obtain a lower bound on
vLD2 . It takes as input an upper bound,U , on the optimal objective value v∗, which can
be obtained by any feasible solution to (3), and a lower bound L (we show in Sect. 4
that L = vQ is valid). At each iteration, we fix the candidate value y = (U+L)/2, and
solve the nonsmooth problem (15) with a specified finite termination condition (e.g.,
an iteration limit) to obtain a lower bound ω2(y) on ω2(y). The nonsmooth problem
(15) could be solved using convex programming techniques, e.g., the subgradient
method or its regularized variants such as the bundle method. If ω2(y) > y, then we
can update L = y, otherwise we update U = y. The bisection procedure terminates
when the difference between the upper and lower bounds is less than a given tolerance.
At any step of the algorithm, L is a valid lower bound on vLD2 .

4 Strength of Lagrangian dual bounds

In this section, we compare the Lagrangian dual bounds developed in Sect. 3 and the
basic lower bounds in Sect. 2.

4.1 Comparing vLD
1 and vC(M)

We first show that vLD1 is no smaller than vC (M). Let

CM =
{
(x, z): x∈S, Gi (x)≤Mi (1 − zi ), zi ∈ [0, 1], ∀i ∈ N ,

∑
i∈N

pi zi ≥ 1 − ε
}

be the feasible region of the continuous relaxation of (4) in which the variables z are
relaxed to be continuous.

Theorem 3 Assume that problem (4) satisfies Slater’s condition, i.e., there exists
(̂x, ẑ) ∈ int(conv(CM )), where int(·) denotes the interior of a set. Then,

vLD1 ≥ vC (M).

Proof First observe that the continuous relaxation of (4) is a convex program with
a linear objective function over the convex hull of the set CM , which is assumed to
satisfy Slater’s condition [33]. Therefore, by strong duality, the Lagrangian dual of
this convex program in which the nonanticipativity constraints

∑
i∈N pi Hi xi = h are

relaxed has the optimal value equal to vC (M). But the Lagrangian relaxation problem
used in this Lagrangian dual is identical to that in (8) except that the z variables are
relaxed to be continuous. The conclusion follows. 
�
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Next we establish a set of sufficient conditions under which vC (M) is equal to vLD1 .

Proposition 3 Suppose that S = R
n+ and for each i ∈ N , pi = 1

N and Gi (x) =
Ḡi (x)+Mi ,where Ḡi (t x) ≤ t Ḡi (x) for all t ≥ 1and Ḡi (0) ≤ 0. ThenvC (M) = vLD1 .

Proof We only need to show that vC (M) ≥ vLD1 . Recall that

vC (M) = min
x,z

{
c�x : x ∈ S,Gi (x) ≤ Mi (1 − zi ), zi ∈ [0, 1],∀i ∈ N ,

∑
i∈N

zi ≥ �N (1 − ε)�
}

= min
x,z

{
c�x : x ∈ S,Gi (x) ≤ Mi (1 − zi ),∀i ∈ N , z ∈ conv(Z)

}
.

From Theorem 1 and Eq. (8) we know that

vLD1 = min
x,z

{ N∑
i=1

pi c
�xi : {(xi , zi )}i∈N ∈ conv

({
{(xi , zi )}i∈N : xi ∈ S,

Gi (x
i ) ≤ Mi (1 − zi ),∀i ∈ N , z ∈ Z

})
,
∑
i∈N

pi Hi x
i = h

}
.

Let (̂x, ẑ), where ẑ := {̂zi }i∈N , be an optimal solution of the continuous relaxation of
(4). Since ẑ ∈ conv(Z), there exists a set of points {zk} ∈ Z such that ẑ = ∑

k λkzk
with

∑
k λk = 1 and λk > 0. Construct xik = x̂

ẑi
zik for all k and for all i ∈ N . Note

that the operations are well defined since, for each i , ẑi = 1 (or 0) implies zik = 1 (or
0) for all k, and we assume that 0 · ∞ = 0. It follows that

xik ∈ S, zk ∈ Z ,

Gi (xik) = Ḡi (xik) + Mi ≤ 1

ẑi
Ḡi (̂x)zik + Mi ≤ Mi (1 − zik),∀i ∈ N ,

where the first equality is the definition ofGi (·), the second inequality follows because
if zik = 0, then xik = 0, and Ḡi (0) ≤ 0; otherwise, xik = x̂

ẑi
and Ḡi (t x) ≤ t Ḡi (x) for

all t ≥ 1; while the last inequality follows since Gi (̂x) ≤ Mi (1 − ẑi ) or equivalently,
1
ẑi
Ḡi (̂x) ≤ −Mi . Now define (xi , ẑ) = ∑

k λk(xik, zk), then we have xi = x̂ for all
i ∈ N . Hence,

{(xi , ẑi )}i∈N ∈conv
({

{(xi , zi )}i∈N : xi ∈ S,Gi (x
i )≤Mi (1−zi ),∀i ∈ N , z∈ Z

})

and {xi }i∈N also satisfies the nonanticipativity constraints. Thus (̂x, ẑ) is also feasible
to (8) implying vC (M) ≥ vLD1 . 
�
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A large class of problems that satisfy the conditions of Proposition 3 are chance-
constrained covering linear programs with equiprobable scenarios [30]:

min
x,z

{
c�x :Ai x≥bi zi , ∀ i∈N ,

∑
i∈N

zi ≥ (1 − ε)N , x ≥ 0, zi ∈ {0, 1}, ∀i ∈ N
}

.

where Ai ∈ R
mi×n
+ , bi ∈ R

mi+ for all i ∈ N . Recasting the above problem in the form
of (4) we note that S = R

n+, Ḡi (x) = −Ai x, Mi = bi . Indeed we have Ḡi (t x) =
−t Ai x = t Ḡi (x) for all t ≥ 1, and Ḡi = 0.

Remark 1 For chance-constrained covering linear programs with equiprobable sce-
narios [30], the basic nonanticipative dual bound vLD1 is equal to the relaxation bound
of the big-M formulation (4) obtained by relaxing the integrality constraints on z, i.e.,
vLD1 = vC (M). For other chance-constrained linear programs, vLD1 could be strictly
better than vC (M) (see Table 1 in Sect. 7).

4.2 Comparing vLD
1 and vLD

2

The following theorem compares the strengths of the two different Lagrangian dual
bounds vLD1 and vLD2 .

Theorem 4 The quantile-based Lagrangian dual is at least as strong as the basic
nonanticipative Lagrangian dual, i.e., vLD1 ≤ vLD2 .

Proof Let Qi := {(xi , zi ) : (7c), (7e)}(= {(xi , zi ) : (13d), (13f)}) for all i ∈ N .
The claim follows since

vLD1 = max
λ

min
x,y,z

{
y +

∑
i∈N

piλ
�Hi x

i − λ�h : (xi , zi ) ∈ Qi , ∀i ∈ N ,

z ∈ Z , y ≥
∑
i∈N

pi c
�xi

}

≤ max
λ

min
x,y,z

{
y +

∑
i∈N

piλ
�Hi x

i − λ�h : (xi , zi ) ∈ Qi , ∀i ∈ N ,

z ∈ Z , y ≥ c�xi , ∀i ∈ N
}

≤ min
y

max
λ

min
x,z

{
y +

∑
i∈N

piλ
�Hi x

i − λ�h : (xi , zi ) ∈ Qi , ∀i ∈ N ,

z ∈ Z , y ≥ c�xi , ∀i ∈ N
}

= vLD2 ,
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where the first equality follows from the definition of vLD1 ; the second inequality
follows since y ≥ ∑

i∈N pi c�xi is an aggregation of the constraints y ≥ c�xi for
each i ∈ N ; the third inequality follows from the max-min inequality; and the final
equality is from the definition of vLD2 . 
�

4.3 Comparisons with vQ

Theorem 5 The quantile-based Lagrangian dual bound is at least as strong as the
quantile bound, i.e., vLD2 ≥ vQ.

Proof First define

vR2 (y) =
{
y R(y) �= ∅,

+∞ otherwise.

Observe that vR2 (y) = y +L2(0, y), and so vR2 (y) ≤ ω2(y) for all y ∈ R because it is
obtained by using λ = 0 in (15). Thus, it follows that vR := min{vR2 (y) : y ∈ R} ≤
vLD2 . We show that this first bound is identical to the quantile bound, i.e., vR = vQ .

Recall that

R(y) =
{
{xi , zi }i∈N : (13b), (13d)−(13f)

}
.

We first show R(vQ) �= ∅, which implies vR2 (vQ) = vQ and thus vR ≤ vQ . Recall
that ηi := min{c�x : x ∈ Xi }. Let I Q = {σq , . . . , σN } be the set of scenarios i that
ηi ≤ ησq = vQ for all i ∈ I Q . By thedefinitionof vQ ,

∑
i∈I Q pi ≥ 1−ε.Also, for each

i ∈ I Q , there exists x̄ i ∈ Xi with c� x̄ i = ηi ≤ vQ .Next, let x̂ ∈ argmin{c�x : x ∈ S}
and observe that c� x̂ ≤ ηi ≤ vQ for all i ∈ I Q . Then, a feasible point of R(vQ) is
obtained by setting xi = x̄ i for i ∈ I Q , xi = x̂ for i ∈ N\I Q and setting zi = 1 for
i ∈ I Q and zi = 0 otherwise.

Now let y < vQ and let I (y) := {i ∈ N : ηi ≤ y}. For each scenario i ∈ N\I (y)
there is no xi ∈ Xi with c�xi ≤ y. Bydefinitionof vQ , it holds that

∑
i∈I (y) pi < 1−ε.

Thus, R(y) = ∅ and vR2 (y) = +∞. Thus vR > y. As y < vQ is arbitrary, we conclude
that vR ≥ vQ . 
�

Neither of vLD1 , vC (M) has a general bound relationship with vQ . The computa-
tional results in Sect. 7 provide examples where the quantile bound vQ is stronger
than vLD1 or vC (M), while the following example shows that vLD1 or vC (M) can be
stronger than vQ .

Example 1 Consider a three-scenario instance as follows: X1 = {x ∈ R
2+ : 0.5x1 +

2x2 ≥ 1}, X2 = {x ∈ R
2+ : 2x1 + 0.5x2 ≥ 1}, X3 = {x ∈ R

2+ : x1 + x2 ≥ 1}, and
S = R

2+. Each scenario happens with probability 1/3, and we let ε = 1/3, M = 1.
The objective is to minimize x1 + x2. For this instance, the quantile bound vQ = 0.5,
and vLD1 = vC (M) = 4/7, therefore, vLD1 , vC (M) are stronger lower bounds.
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4.4 Bound comparison summary

We close this section by noting a set of sufficient conditions under which there is no
duality gap.

Proposition 4 Suppose Gi : S → R
mi− ∪Ri

M for all i ∈ N , whereRi
M = {s ∈ R

mi :
‖s‖∞ = M} for all i ∈ N and M ∈ R+. Then we have vC (M) = vLD1 = vLD2 = v∗.

Proof FromTheorem2andTheorems3 and4, it is sufficient to show that vC (M) ≥ v∗.
Suppose that (̂x, ẑ) is an optimal solution of the continuous relaxation of (4), where

ẑ := {̂zi }i∈N .We show that (̂x, �̂z�) is another optimal solution. Indeed, if ẑ is integral,
then we are done. Otherwise, suppose that there is an i ′ such that ẑi ′ ∈ (0, 1), then
by the definition of Gi ′(·), we must have Gi ′ (̂x) ≤ 0. Thus, (̂x, �̂z�) is feasible to the
continuous relaxation of (4) with the optimal value vC (M). Since �̂z� ∈ Z , (̂x, �̂z�)
is also feasible to (4). Thus, vC (M) ≥ v∗. 
�

A large class of problems that satisfy the conditions of Proposition 4 are chance-
constrained set covering problems [2,4]:

min
x,z

{
c�x : Ai x ≥ bi zi , ∀ i ∈ N , x ∈ {0, 1}n, z ∈ Z

}
, (18)

where Ai ∈ {0, 1}mi×n, bi ∈ {0, 1}mi and ‖bi‖∞ = 1 for all i ∈ N . Here Gi (x) =
−Ai x+bi and soGi (x) : {0, 1}n → Z

mi− ∪Ri
1 withRi

1 = {s ∈ {0, 1}mi : ‖s‖∞ = 1},
for all i ∈ N and hence vC (M) = vLD1 = vLD2 = v∗.

The relationships between the basic lower bounds of Sect. 2 and the Lagrangian
dual bounds of Sect. 3 are summarized in Fig. 1.

5 Primal formulations for chance-constrained mixed-integer linear
programs

In this sectionwe consider chance-constrainedmixed-integer linear programs (MILP),
i.e., problem (3) where S = {x ∈ R

n−r × Z
r : Dx ≤ d} and Xi = {x ∈ R

n−r × Z
r :

Ai x ≤ bi } for each i ∈ N . Recall our assumption that, for all i ∈ N , Xi ⊆ S and so
we may assume the constraints Dx ≤ d are included in the constraints Ai x ≤ bi . We

Fig. 1 Bound comparison summary
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derive two new formulations for such problems that are inspired by the two Lagrangian
dual problemsproposed in the previous sections. In particular, under certain conditions,
these relaxations are primal formulations of the Lagrangian duals. The constructions
here can be extended to the case where S, Xi and f are defined by convex functions
using the perspective function approach in [9].

5.1 Primal formulation corresponding to vLD
1

Note that replacing zi = I(xi ∈ Xi ) in (8) by zi ≤ I(xi ∈ Xi ) for each i ∈ N yields
an equivalent formulation. Recall that Z = {z ∈ {0, 1}N : ∑N

i=1 pi zi ≥ 1− ε} and let

T1 :=
{
{(xi , zi )}i∈N : Dxi ≤ d, zi ≤ I(Ai xi ≤ bi ),

xi ∈ R
n−r × Z

r , ∀ i ∈ N , z ∈ Z
}
.

From Theorem 1 and Eq. (8) we know that

vLD1 = min
x,z

{
N∑
i=1

pi c
�xi : {(xi , zi )}i∈N ∈ conv(T1),

∑
i∈N

pi Hi x
i = h

}
. (19)

Next we use an extended formulation of conv(T1) to derive a linear programming
relaxation of (19) in the following form

zLP1 := min
x,z,u,w

c�x (20a)

s.t. ui + wi = x, ∀i ∈ N , (20b)

Aiui ≤ bi zi , ∀i ∈ N , (20c)

Dwi ≤ d(1 − zi ), ∀i ∈ N , (20d)

z ∈ conv(Z). (20e)

We let PS := {x ∈ R
n : Dx ≤ d} and Pi := {x ∈ R

n : Ai x ≤ bi }, i ∈ N be the
continuous relaxations of S, Xi for each i ∈ N respectively (the sets are identical in
the case r = 0). The next theorem shows the relationship between vLD1 and zLP1 .

Theorem 6 The basic Lagrangian dual bound vLD
1 and the primal bound zLP1 defined

in formulation (20) satisfy: vLD
1 ≥ zLP1 , where the equality holds if PS = conv(S)

and Pi = conv(Xi ) for all i ∈ N .

Proof We just need to show that when PS = conv(S) and Pi = conv(Xi ) for all
i ∈ N , vLD1 = zLP1 . In the following, for the sake of notational simplicity, we
use (x, z,u,w) = {(xi , zi , ui , wi )}i∈N and the operations on these vectors will be
assumed to be scenario-wise, e.g., x · z := {xi zi }i∈N and x/z := {xi/zi }i∈N (here, if
zi = 0 the corresponding element is defined to be zero).
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(i) Define

T̄1 :=
{
{(xi , zi )}i∈N : Dxi ≤ d, zi ≤ I(Ai xi ≤ bi ), ∀ i ∈ N , z ∈ Z

}
.

We show that conv(T1) = conv(T̄1). Clearly, conv(T1) ⊆ conv(T̄1) as T1 ⊆
T̄1. Hence, we only need to show that conv(T1) ⊇ conv(T̄1) or equivalently,
conv(T1) ⊇ T̄1.
Let (x, z) ∈ T̄1. Then for each i ∈ N , we have xi ∈ Pi if zi = 1; xi ∈ PS ,
otherwise. Thus, there exists a finite set of vectors {xi

ki
}ki∈Ki and nonneg-

ative weights {λik}k∈Ki such that
∑

k∈Ki λik = 1, xi = ∑
ki∈Ki λi

ki
x i
ki

and

Dxi
ki

≤ d, zi ≤ I(Ai xi
ki

≤ bi ), xi
ki

∈ R
n−r × Z

r for each ki ∈ Ki . Hence, for

each {ki }i∈N ∈ ∏
i∈N Ki , we have {(xi

ki
, zi )}i∈N ∈ T1, and (x, z) ∈

conv({(xi
ki

, zi )}i∈N ,∀{ki }i∈N ∈ ∏
i∈N Ki ) ⊆ conv(T1).

(ii) Next, we define the polyhedron:

W1 := {
(xi , zi )}i∈N :∃(ui , wi ), i∈N , s.t. (20c)−(20e), ui + wi = xi , ∀i∈N }

.

Then, because the constraints
∑

i∈N pi Hi xi = h enforce that all vectors xi are
equal to the same vector, say x , (20) can be reformulated as:

zLP1 = min
x,z

{
N∑
i=1

pi c
�xi : {(xi , zi )}i∈N ∈ W1,

∑
i∈N

pi Hi x
i = h

}
.

Therefore, it is sufficient to show that conv(T1) = conv(T̄1) = W1. We claim that
T̄1 ⊆ W1, since for each (x, z) ∈ T̄1, we can find a (ui , wi ) pair for each i ∈ N
that satisfies all the constraints in W1 by setting ui = xi , wi = 0 if zi = 1, and
ui = 0, wi = xi otherwise. Therefore, conv(T1) = conv(T̄1) ⊆ W1. Thus, we
only need to show W1 ⊆ conv(T̄1).
Let (x, z,u,w) ∈ W1. As z ∈ conv(Z), there exists a finite set of vectors {z̄k}k∈K
and nonnegative weights {λk}k∈K such that z = ∑

k∈K λk z̄k . Now, for each
k ∈ K , define vector x̄k = z̄k · (u/z) + (1 − z̄k) · w/(1 − z). Then, a simple
calculation would show that

∑
k∈K λk x̄k = x.

The vector (x̄k, z̄k) satisfies z̄k ∈ Z , and for i ∈ N , if z̄ik = 0 then x̄ik =
wi/(1 − zi ) ∈ conv(S) = PS from (20d) and if z̄ik = 1, then x̄ik = ui/zi ∈
conv(Xi ) = Pi from (20c). Thus, (x̄k, z̄k) ∈ T̄1 for each k ∈ K , which directly
implies that (x, z) ∈ conv(T̄1). 
�

It follows from Theorem 6 that vLD1 = zLP1 for chance-constrained linear programs
(i.e., when r = 0).

When pi = 1/N for all i ∈ N then conv(Z) = {z : ∑
i∈N zi ≥ �(1 − ε)N�, zi ∈

[0, 1], i ∈ N }. For general pi values a description of conv(Z) in (20e) would require
the convex hull of the corresponding knapsack set. Since this is in general intractable,
we may replace constraint (20e) with a suitable polyhedral relaxation, at the expense
of weakening the LP relaxation bound.
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Inspired by the above primal formulation, we obtain the following “big-M” free
formulation for chance-constrained MILP.

Proposition 5 Consider a CCSP (1) with assumptions (i)–(iv), then

v∗ = min
x,z,u,w

{c�x : (20b)−(20d), z ∈ Z , x ∈ R
n−r × Z

r }, (21)

is a valid MILP formulation of (3).

5.2 Primal formulation corresponding to vLD
2

Wenext derive a primal formulation for vLD2 under certain conditions. FromTheorem1
and Eq. (17), we have

vLD2 = min
x,y,z

{
y : ∃{(xi , zi )}i∈N ∈ conv(R(y)),

∑
i∈N

pi Hi x
i = h

}
, (22)

where R(y) = {{xi , zi }i∈N : c�xi ≤ y, Dxi ≤ d, zi ≤ I(Ai xi ≤ bi ), xi ∈ R
n−r ×

Z
r , ∀ i ∈ N , z ∈ Z}. Next we use an extended formulation of conv(R(y)) to derive

the following nonlinear programming formulation of (22):

zNLP
2 := min

x,y,z,u,w
y (23a)

s.t. c�ui ≤ yzi , ∀i ∈ N , (23b)

c�wi ≤ y(1 − zi ), ∀i ∈ N , (23c)

and (20b)–(20e).

We define PS(y) := {x ∈ R
n : c�x ≤ y, Dx ≤ d} and Pi (y) := {x ∈ R

n : c�x ≤
y, Ai x ≤ bi }, i ∈ N . The next theorem shows the relationship between vLD2 and
zNLP
2 .

Theorem 7 The quantile-based Lagrangian dual bound vLD2 and the primal bound
zNLP
2 defined in formulation (23) satisfy: vLD2 ≥ zNLP

2 , where the equality holds if
PS(y) = conv(S ∩ {x : c�x ≤ y}) and Pi (y) = conv(Xi ∩ {x : c�x ≤ y}) for all
i ∈ N and for all y ∈ R.

Proof We only need to show that when PS(y) = conv(S ∩ {x : c�x ≤ y}) and
Pi (y) = conv(Xi ∩ {x : c�x ≤ y}) for all i ∈ N and y, then vLD2 = zNLP

2 .
This directly implies that vLD2 ≥ zNLP

2 as PS(y) ⊇ conv(S ∩ {x : c�x ≤ y}) and
Pi (y) ⊇ conv(Xi ∩ {x : c�x ≤ y}).

The remainder of the proof is almost identical to that of Theorem 6, so we provide
a sketch.

(i) Let us define R̄(y) := {{(xi , zi )}i∈N : c�xi ≤ y, Dxi ≤ d, zi ≤ I(Ai xi ≤
bi ), ∀ i ∈ N , z ∈ Z}. Using an approach identical to that in part (i) of the proof
of Theorem 6 it can be shown that conv(R(y)) = conv(R̄(y)) for a given y.
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(ii) Next, we define a set W2(y) = {{(xi , zi )}i∈N : ∃(ui , wi ), i ∈ N , s.t.
(20c)−(20e), (23b), (23c), ui + wi = xi , ∀i ∈ N } with a given y. Then,
because the constraints

∑
i∈N pi Hi xi = h enforce that all vectors xi are equal

to the same vector, say x , (23) can be reformulated as:

zNLP
2 = min

x,y,z

{
y : {(xi , zi )}i∈N ∈ W2(y),

∑
i∈N

pi Hi x
i = h

}
.

Therefore, it is sufficient to show that conv(R(y)) = conv(R̄(y)) = W2(y). The
proof of this is similar to part (ii) of the proof of Theorem 6. 
�

It follows from Theorem 7 that vLD2 = zNLP
2 for chance-constrained linear pro-

grams (i.e., when r = 0).
Although (23) is a nonconvex nonlinear program, it can be solved by bisection

on the value of y by observing that the feasible region of (23) is nonincreasing over
y. Thus, zNLP

2 can be calculated by finding the minimum value of y for which the
feasible regions of (23) is nonempty. Such a minimum exists, since the feasible region
of (23) is a closed set, and its objective is bounded from below. For any fixed y, the
feasibility problem of (23) is a linear program. The disadvantage of solving (23) by
bisection is that it may be difficult to incorporate such a procedure within a standard
linear programming based branch-and-cut algorithm.We therefore propose an iterative
scheme that solves a sequence of linear programs that generate progressively better
lower bounds for zNLP

2 , and eventually converges to zNLP
2 .

5.2.1 A linear programming based approach for zNLP
2

Let � be a lower bound for zNLP
2 (e.g., one can use vC (M)). Given such a lower

bound �, the nonconvex constraints (23b) and (23c) can be reformulated with linear
constraints, leading to the following formulation:

zLP2 (�) = min
x,y,z,u,w

y, (24a)

s.t. y ≥ c�ui + �(1 − zi ), ∀i ∈ N , (24b)

y ≥ c�wi + �zi , ∀i ∈ N , (24c)

and (20b)−(20e).

Observe that zLP2 (�) is an increasing function of �, and if � ≤ zNLP
2 then zLP2 (�) ≤

zNLP
2 . Therefore, if we solve (24) iteratively and update � using the optimal objective
value, eventually we will converge to some zLP2 (�̄) = �̄ ≤ zNLP

2 . In fact, the value �̄

will be the same as zNLP
2 , since if we replace y and � in (24b) and (24c) by �̄, we get

the same structure as (23b) and (23c). We formalize these assertions in the next two
results.

Proposition 6 Let zNLP
2 = �∗, then zLP2 (�∗) = �∗.
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Proof First, y = �∗ satisfies all the constraints in (24), so zLP2 (�∗) ≤ �∗. Suppose
zLP2 (�∗) < �∗, then there exists y∗ < �∗ and {(ui , wi , zi )}i∈N , which is feasible to
(20b)–(20e) and (24b) and (24c) being:

y∗ ≥ c�ui + �∗(1 − zi ), ∀i ∈ N ,

y∗ ≥ c�wi + �∗zi , ∀i ∈ N .

Thus y∗ ≥ c�ui + y∗(1 − zi ), y∗ ≥ c�wi + y∗zi since zi ∈ [0, 1] for each i ∈ N .
So this solution is feasible to (23), which is a contradiction. 
�
Proposition 7 Suppose �0 ≤ zNLP

2 , and let �k = zLP2 (�k−1) for k ≥ 1. Then
{�k, k ≥ 1} converges to zNLP

2 .

Proof As {�k} is bounded above by zNLP
2 , the sequence converges to some �̄ ≤ zNLP

2
by the monotone convergence theorem. On the other hand, as zLP2 (�̄) = �̄, there exists
{(ui , wi , zi )}i∈N such that this solution with y = �̄ is feasible to (24b) and (24c) with
� = �̄, and (20b)–(20e). But this implies that this solution is also feasible to (23), and
hence zNLP

2 ≤ �̄. 
�
Similar to the primal formulation (21), enforcing integrality constraints on z and

any integer constrained x in (24) yields an alternative “big-M” free formulation for a
general chance-constrained MILP.

Proposition 8 Consider a CCSP (1) with assumptions (i)–(iv), then

v∗ = min {y : x ∈ R
n−r × Z

r , z ∈ Z , (24b), (24c), and (20b)−(20d)}, (25)

is a valid MILP formulation of (3).

Recall that the constraints (24b) and (24c) depend on a given lower bound �. In our
arguments above we required � ≤ zNLP

2 in order to argue that the iterative solution
of the linear programming relaxation will converge to zNLP

2 . However, any � ≤ v∗
can be used for validity of the formulation (25). As examples, one may choose to use
the quantile bound vQ , or zNLP

2 obtained by iteratively solving (24). In Sect. 6, we
develop branch-and-cut decomposition algorithms based on MILP formulations (21)
and (25).

5.2.2 A second-order cone programming based approach for zNLP
2

Inspired by the nonlinear program (23), we consider the following second order cone
programming (SOCP) problem

zSOC
2 (�) := min

x,β,z,u,w,s,t
β, (26a)

s.t. c�ui − �zi ≤ si , (26b)

c�wi − �(1 − zi ) ≤ ti , (26c)
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(si )
2 ≤ βzi , ∀i ∈ N , (26d)

(ti )
2 ≤ β(1 − zi ), ∀i ∈ N , (26e)

si , ti ∈ R+,∀i ∈ N , (26f)

and (20b)−(20e),

where � is a lower boundon zNLP
2 . To see that that (26) is indeed anSOCPproblemnote

that βzi = 1
4 (β+zi )2− 1

4 (β−zi )2 and β(1−zi ) = 1
4 (β+(1−zi ))2− 1

4 (β−(1−zi ))2.
Note that, since β is nonnegative by (26d), so is zSOC

2 (�). We next relate the values
zSOC
2 (�), zNLP

2 , and zLP2 (�).

Proposition 9 Let zNLP
2 be the optimal value of (23), and for each � ≤ zNLP

2 , let
zLP2 (�), zSOC

2 (�) be the optimal values of (24) and (26), respectively. Then these values
satisfy

zNLP
2 ≥

√
zSOC
2 (�) + � ≥ zLP2 (�).

Proof We first show that zNLP
2 ≥

√
zSOC
2 (�) + �. Let (x, y, z,u,w) be an opti-

mal solution of (23). Consider β ′ = (y − �)2, si = max{c�ui − �zi , 0} and
ti = max{c�wi − �(1 − zi ), 0}. It is clear that (x, β ′, z,u,w, s, t) satisfies (20b)–
(20e) and (26b), (26c), (26f). From (23b), (23c), and the fact that � is a lower bound
on zNLP

2 , we have

0 ≤ y − �,

c�ui − �zi ≤ (y − �)zi ,∀i ∈ N ,

c�wi − �(1 − zi ) ≤ (y − �)(1 − zi ),∀i ∈ N .

Hence, since z2i ≤ zi for all i ∈ N ,

(si )
2 ≤ (y − �)2z2i ≤ β ′zi ,∀i ∈ N ,

(ti )
2 ≤ (y − �)2(1 − zi )

2 ≤ β ′(1 − zi ),∀i ∈ N .

Thus, (x, β ′, z,u,w, s, t) also satisfies (26d) and (26e). Hence zNLP
2 ≥

√
zSOC
2 (�)+�.

Now we show that
√
zSOC
2 (�) + � ≥ zLP2 (�). Let (x, β, z,u,w, s, t) be an optimal

solution of (26). Consider y′ = √
β + �. It is clear that (x, y′, z,u,w) satisfies (20b)–

(20e). From (26b)–(26f), the fact that � is a lower bound on zNLP
2 , and zi ≤ 1 for all

i ∈ N , we have

(max{c�ui − �zi , 0})2 ≤ (y′ − �)2zi ≤ (y′ − �)2,∀i ∈ N ,

(max{c�wi − �(1 − zi ), 0})2 ≤ (y′ − �)2(1 − zi ) ≤ (y′ − �)2,∀i ∈ N .
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Taking square roots of the above inequalities we see that (x, y′, z,u,w) satisfies (24b)

and (24c). Hence
√
zSOC
2 (�) + � ≥ zLP2 (�). 
�

Based on the above result we can extend the successive linear programming based
approach established in Propositions 6 and 7 to one involving solving successive
solutions of the SOCP (26). Also similar to (25), the SOCP (26) after enforcing inte-
grality constraints on z and any integer constrained x variables leads to a “big-M free”
mixed-integer SOCP (MISOCP) formulation for a general chance-constrained MILP.

Proposition 10 Consider a CCSP (1) with assumptions (i)–(iv), then

(v∗ − �)2 = min {β : x ∈ R
n−r × Z

r , z ∈ Z , (26b)−(26f), and (20b)−(20d)},
(27)

is a valid MISOCP formulation of (3).

6 Decomposition algorithms

In this section, we introduce a heuristic algorithm inspired by the bisection procedure
for calculating the Lagrangian dual vLD2 and also present two exact algorithms for
solving CCSPs (3).

6.1 A heuristic scheme

The idea of our proposed heuristic algorithm is to use bisection to search for a value �

so that fixing y = � in (13) may yield a feasible solution. Let Xi = {x ∈ R
n−r ×Z

r :
Gi (x) ≤ 0} for all i ∈ N and let L and U be known initial lower and upper bounds
on the optimal value of (13). For a fixed y ∈ [L ,U ], say y = (L +U )/2, we consider
the following optimization problem that minimizes the sum of infeasibilities for each
scenario:

min
s,x

∑
i∈N

pi si (28a)

s.t. Gi (x) ≤ sie, i ∈ N , (28b)

c�x ≤ y, x ∈ S, (28c)

x ∈ R
n−r × Z

r , s ∈ R
N+ , (28d)

where e is a vector of all 1’s. This problem is of the form of a two stage stochastic
programwith simple recourse and canbenefit fromspecializeddecomposition schemes
for such problems. Given an optimal solution (̂x, ŝ) of (28), we check if it is feasible to
the original problem (13). We set ẑi = I(̂si = 0) for all i ∈ N . If

∑
i∈N pi ẑi ≥ 1− ε,

then x̂ is feasible to (13), and therefore y is a valid upper bound for (13). Then we
can set U = y and repeat the above steps to find a better feasible solution and hence
a better upper bound. On the other hand, if

∑
i∈N pi ẑi < 1 − ε, we set L = y and
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repeat the above steps to try to find a feasible solution. Notice that L might not be
a valid lower bound on v∗ when the algorithm terminates. The detailed procedure is
described in Algorithm 1.

Algorithm 1 A bisection-based heuristic.
1: Let L > −∞ and U < ∞ be known lower and upper bounds for (13), let δ > 0 be the stopping

tolerance parameter.
2: while U − L > δ do
3: y ← (L +U )/2.
4: Let (̂x, ŝ) be an optimal solution of (28) and set ẑi = I(̂si = 0) for all i ∈ N .
5: if

∑N
i=1 pi ẑi ≥ 1 − ε then

6: U ← y.
7: else
8: L ← y.
9: end if
10: end while

Let vH denote the solution given byAlgorithm 1.We next show that 0 ≤ vH −v∗ ≤
δ under certain conditions.

Proposition 11 Suppose Gi (x) : S → R
mi− ∪Ri

M ,∀i ∈ N , whereRi
M = {s ∈ R

mi :
‖s‖∞ = M} for all i ∈ N , M ∈ R+. Then Algorithm 1 returns a feasible solution
with vH − v∗ ≤ δ, where δ > 0 is the chosen stopping tolerance parameter.

Proof First of all, we observe that for any optimal solution (x∗, s∗) of (28) with a
given y, s∗

i is either 0 or M for each i ∈ N . Indeed, if Gi (x∗) ≤ 0, then s∗
i = 0;

otherwise, the smallest s∗
i that can be chosen is M since Gi (x∗) ∈ Ri

M .
Suppose that (̂x, ẑ) is an optimal solution of (3). Let ŝ = Me − M ẑ, and (̂x, ŝ) is a

feasible solution to (28) with any y ≥ v∗ and
∑

i∈N pî s/M ≤ ε. Thus, vH ≤ v∗ + δ.

�

The conditions of Proposition 11 are identical to those in Proposition 4, and the
chance-constrained set covering problems (18) satisfy these conditions. Note also that
for this problem class with an integer cost vector we can choose δ < 1 and recover an
exact optimal solution.

6.2 A scenario decomposition algorithm for chance-constrained 0–1 programs

For two-stage stochastic programs in which the first-stage variables are all binary [1]
presented a scenario decomposition algorithm that uses the nonanticipativeLagrangian
dual of such problems. In this approach, feasible solutions from the scenario subprob-
lems are used to update the upper bound. We describe a simple extension of this
method to solve chance-constrained 0–1 programs, which can take advantage of the
new Lagrangian dual problems proposed in Sect. 3. Exactly solving the Lagrangian
dual problems (8) and (17) may be challenging in computation. However, the scenario
decomposition algorithm remains valid even if the Lagrangian dual multipliers are not
optimal. In a practical implementation, we may settle with a lower bound of vLD1 , or
vLD2 . For example, we may simply use the quantile bound vQ , or even a valid lower
bound from the scenario grouping based relaxation (5).
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Algorithm 2 Scenario decomposition algorithm
1: Let UB be a known upper bound, let LB ← −∞, E = ∅, and let δ > 0 be the stopping tolerance

parameter.
2: while UB − LB > δ do
3: Calculate a lower bound v for the Lagrangian dual vLD1 or the quantile-based Lagrangian dual vLD2 ;

4: Collect the optimal solutions x̂ i , i ∈ N that correspond to v, let E = ∪i∈N x̂ i .
5: Update LB ← max

{
LB, v

}
.

6: for x ∈ E do
7: if x is feasible and c�x < UB then
8: UB ← c�x .
9: end if
10: end for
11: Let Xi = Xi \ E, ∀i ∈ N .
12: end while

Algorithm 2 provides a description of the scenario decomposition approach. Finite
convergence of Algorithm 2 is an immediate consequence of the following three facts:
the lower bound is nondecreasing; a feasible solution is never excluded if it has not
been evaluated; and there are finitely many feasible solutions since for each scenario
i ∈ N , Xi is a finite set. Implementation of the update of the set Xi in line 11 can be
accomplished with “no good” cut based on the assumption that all the x variables are
binary; see [1] for details.

6.3 Branch-and-cut algorithms based on primal MILP formulations

Section 5 provided two MILP formulations (21) and (25) for (3) when the objective
function and all constraints are linear. These formulations have a set of variables and
constraints for each scenario i ∈ N , so solving them directly may be time-consuming.
We therefore apply a branch-and-cut framework to solve these two MILPs. Specif-
ically, a Benders decomposition algorithm is applied in which the master problem
consists of the decision variables x and the scenario decision variables z, and in the
case of (25) the variable y. The decision variables ui and wi for i ∈ N are projected
out, and Benders feasibility cuts are added to iteratively build the projected feasible
region. The generation of Benders feasibility cuts decomposes into a separate sub-
problem for each scenario. The detailed development of the cuts and the resulting
branch-and-cut algorithms are presented in the online supplement.

7 Numerical illustration

In this section we evaluate the proposed bounds and algorithms on two set of multi-
dimensional knapsack instances,mk-20-10 andmk-39-5, from [35] (these instances are
named 1-4-multi and 1-6-multi, respectively, in [35]). Instance namemk-n-m indicates
the instance has n decision variables and m constraints in each scenario. For both sets
of instances, we consider four different scenario sizes: N ∈ {100, 500, 1000, 3000}.
Under each scenario size (e.g., N = 100), we perform five different replications. Since
the results among different replications are similar, we report averages over the five
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replications. We consider two different types of variables x : continuous and binary.
The deterministic feasible set is S = [0, 1]n for the instances with continuous x vari-
ables and S = {0, 1}n for those with binary x variables. For each scenario i ∈ N ,
the feasible set is Xi := {x ∈ S : Ai x ≤ bi }, where Ai ∈ R

m×n+ , bi ∈ R
m+ is the i th

realization of random data ξ , and the objective is to minimize −c�x , where the coef-
ficient vector c ∈ R

n+. In all our experiments, we set the number of threads to one, and
we use the default optimality gap tolerance in CPLEX for solving MIP models, which
is 0.01%.

7.1 Illustration of bound quality on instances with continuous x

We first present a numerical illustration on the strength of the Lagrangian dual bounds
on instances with continuous x , i.e., when S = [0, 1]n . We compare the proposed
Lagrangian bounds vLD1 and vLD2 with the LP relaxation bound vC (M) (vC (M) and
vC (M) are identical in this case), quantile bound vQ , and the optimal objective value
v∗. Since x is continuous, from Theorems 6 and 7, the Lagrangian dual bounds
vLD1 , vLD2 are equal to zLP1 , zNLP

2 , respectively. Therefore, we compute vLD1 using
(20), and when computing vLD2 (zNLP

2 ), we start with the quantile bound vQ , then
solve the primal LP (24) iteratively using Benders decomposition.

For vLD1 , vLD2 and vC (M), we report bounds that are obtained with and with-
out big-M strengthening, a coefficient strengthening procedure introduced in [35]
for CCSPs. Without any big-M strengthening, a naive big-M parameter for for-
mulation (4) is calculated by: Mi j = max{Ai

j x − bij : x ∈ S}, for all
i ∈ N , j = 1, 2, . . . ,mi . At the other extreme, one could obtain a strength-
ened big-M parameter Mkl for scenario k ∈ N , constraint l by solving an MIP
that has the same structure as formulation (4) for the original CCSP: Mkl =
max

{
Ak
l x − bkl : Ai x ≤ bi + Mi (1 − zi ), ∀i ∈ N , x ∈ S, z ∈ Z

}
, which would be

too time-consuming. The idea of the big-M strengthening is to obtain a relaxation
bound of this MIP using the quantile bound presented in Sect. 2.2. The strengthened
big-M parameters Mi ’s are useful for formulations other than (4) as well, where the
scenario-independent feasible set S is strengthenedbyvalid inequalities Ai x ≤ Mi+bi

for all i ∈ N .
In Table 1, we show the optimality gaps of vC (M), vQ , vLD1 and vLD2 in the columns

labeled accordingly, where optimality gap for a given lower bound LB is defined as
(v∗ − LB)/|v∗|. Under each lower bound, the columns under label ‘With big-M
Str.’ provides the bounds obtained if the big-M coefficients have been strengthened,
and the columns under label ‘No big-M Str.’ provides the bounds obtained without
strengthening big-M coefficients. We also show the optimality gap of the upper bound
UB given by the heuristic algorithmdescribed in Sect. 6.1 in column labeled vH , which
is calculated as (UB −v∗)/|v∗|. In Table 2, we present the average computation time,
in seconds, for obtaining each of these bounds. In addition, the column ‘M-T’ displays
the time spent on the big-M strengthening procedure, which is a pre-processing step
required for calculating the bounds under the ‘With big-M Str.’ columns. (Thus, the
total time for calculating such a bound is the sum of the ‘M-T’ and the bound time.)
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Table 1 Bound comparison for multi-dimensional continuous knapsack instances

Instance ε N No big-M Str. (%) With big-M Str. (%) vQ (%) vH (%)

vC (M) vLD1 vLD2 vC (M) vLD1 vLD2

mk-20-10 0.1 100 10.1 7.3 1.3 2.3 2.3 1.2 2.4 0.4

500 10.0 7.0 1.4 2.4 2.4 1.2 2.1 0.2

1000 10.0 7.3 1.6 2.5 2.5 1.4 2.5 0.3

3000 9.8 7.2 1.7 2.6 2.6 1.5 2.5 0.2

0.2 100 14.5 10.5 1.3 3.0 3.0 1.1 2.0 0.6

500 14.7 10.3 1.4 3.0 2.9 1.3 2.1 0.3

1000 14.8 10.7 1.7 3.2 3.2 1.5 2.5 0.3

3000 14.4 10.5 1.8 3.2 3.2 1.6 2.6 0.1

mk-39-5 0.1 100 8.0 7.4 2.0 2.0 2.0 1.5 3.2 0.6

500 8.9 8.3 2.5 2.6 2.5 2.0 3.8 0.3

1000 8.8 8.3 2.6 2.6 2.6 2.1 3.9 0.4

3000 8.7 8.3 2.9 2.8 2.8 2.3 4.3 0.1

0.2 100 11.4 10.7 2.1 2.7 2.7 1.8 3.3 0.4

500 12.4 11.7 2.6 3.4 3.3 2.2 3.5 0.3

1000 12.4 11.7 2.9 3.5 3.4 2.4 4.0 0.2

3000 12.1 11.6 3.0 3.5 3.5 2.5 4.2 0.1

Wecan see fromTable 1 that strengtheningbig-M parameters significantly improves
the bounds given by vLD1 and vC (M). Without strengthening big-M parameters,
bounds given by vLD1 and vC (M) are rather weak, especially when a higher risk toler-
ance parameter ε = 0.2 is used. With strengthened big-M parameters, the difference
between vLD1 an vC (M) is very small. On the other hand, the bound improvement
by strengthening big-M parameters is modest for vLD2 , since vLD2 already gives a
tight bound even without strengthening big-M parameters. Overall, the best bounds
are obtained by using strengthened big-M parameters and vLD2 . We also find that the
heuristic scheme yields a very small optimality gap. For large instanceswhere the exact
optimal solution may be challenging to find, one may accept the heuristic solution vH ,
when the gap between the lower bound given by vLD2 and the upper bound given by
vH is small enough. From Table 2 we see that we can obtain these strong bounds
in a small amount of time. Interestingly, we see that formulations with naive big-M
parameters take longer to solve than the ones with strengthened big-M parameters,
even after including the time spent on strengthening the big-M parameters. Thus, for
these instances, big-M strengthening yields improvements in both computation time
and bound.

7.2 Illustration of the branch-and-cut algorithm on instances with continuous x

In this section we describe computational experiments using the branch-and-cut
approach described in Sect. 6.3 for solving formulation (25) on instances with con-
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Table 2 Computational times for computing bounds for multi-dimensional continuous knapsack instances

Instance ε N No big-M Str. With big-M Str. M-T vH

vC (M) vLD1 vLD2 vC (M) vLD1 vLD2

mk-20-10 0.1 100 0.0 0.8 2.6 0.0 0.4 0.8 0.1 0.0

500 0.2 10.5 26.3 0.0 3.4 6.2 3.7 0.2

1000 0.5 34.6 83.7 0.2 11.8 21.5 14.6 0.9

3000 4.1 259.2 683.1 2.0 84.4 151.9 132.2 9.5

0.2 100 0.0 1.0 3.2 0.0 0.5 1.3 0.1 0.0

500 0.2 10.9 42.0 0.1 3.6 12.5 3.7 0.3

1000 0.5 39.8 143.4 0.2 13.7 39.0 14.6 1.2

3000 4.5 301.8 1338.4 2.3 93.5 292.0 132.2 11.9

mk-39-5 0.1 100 0.0 1.0 5.4 0.0 0.5 1.2 0.1 0.0

500 0.1 8.3 40.5 0.1 3.9 9.1 3.5 0.3

1000 0.5 31.4 127.1 0.2 12.9 29.7 13.9 0.8

3000 5.4 222.6 961.2 1.1 84.8 187.5 125.5 7.4

0.2 100 0.0 1.1 8.5 0.0 0.7 2.2 0.1 0.0

500 0.1 8.7 62.1 0.1 5.3 18.7 3.5 0.3

1000 0.5 36.3 224.8 0.3 18.0 55.0 13.9 1.0

3000 4.7 242.7 1636.0 2.4 122.6 382.6 125.2 9.3

tinuous x . For all experiments in our test, we use a time limit of 3600 seconds. We
turn off CPLEX presolve for the branch-and-cut algorithm in order to be able to add
user cuts and lazy constraints. We use the heuristic solution obtained by the heuristic
algorithm in Sect. 6.1 as an MIP start solution. Further implementation details of the
branch-and-cut algorithm are given in the online supplement.

InTable 3we compare the performances of three computational options: theMIP (4)
using strengthened big-M parameters (MIP-(4)), the branch-and-cut algorithm with
strengthened big-M parameters (Benders With big-M), and the branch-and-cut algo-
rithmwithout strengthened big-M parameters (Benders without big-M). For instances
that are not solved to optimality within the time limit, we show in parentheses the num-
ber of instances out of five replications that are solved to optimality, and report the
average optimality gap. For these instances, we use the number of nodes that have
been processed up to the time limit to calculate the average number of nodes.

We observe from Table 3 that the performance of the branch-and-cut algorithm is
improved by using strengthened big-M parameters. This is consistent with what has
been shown in Table 1. Also, we have seen from Table 1 that the root relaxation bound
for the branch-and-cut algorithm is tighter than the MIP formulation (4). However,
this advantage at the root node does not lead to a significant improvement in terms of
the total computation time for solving these instances to optimality. We observe that
for those instances that could be solved within the time limit, the computational times
for the big-M formulation and the branch-and-cut algorithm are similar, although for
instances with the largest number of scenarios in our experiments, the branch-and-
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Table 3 Computational results forMIP formulation (4) and branch-and-cut algorithmonmulti-dimensional
continuous knapsack instances

Instances MIP-(4) Benders w/o big-M Benders With big-M

Instance ε N AvgT AvgN AvgT AvgN AvgT AvgN

mk-20-10 0.1 100 0.2 159 2.1 444 0.9 266

500 52.5 19k 376.6 93k 36.8 35k

1000 2004.9 356k 0.8%(0) >210k 0.2%(4) >788k

3000 1.8%(0) >205k 1.6%(0) >111k 1.3%(0) >546k

0.2 100 0.7 664 8.8 1161 1.7 473

500 452.8 166k 0.5%(1) >297k 760.4 459k

1000 0.6%(0) >610k 1.7%(0) >145k 0.6%(0) >1007k

3000 2.5%(0) >180k 2.8%(0) >65k 1.9%(0) >344k

mk-39-5 0.1 100 0.3 350 5.4 2231 1.4 917

500 781.1 393k 0.2%(1) >383k 339.3 263k

1000 0.5%(0) >905k 1.3%(0) >195k 0.6%(0) >1237k

3000 2.1%(0) >250k 1.7%(0) >96k 1.4%(0) >412k

0.2 100 1.2 2294 31.8 9022 4.5 3294

500 0.3%(0) >1729k 1.4%(0) >229k 0.4%(0) >1441k

1000 1.4%(0) >893k 2.4%(0) >168k 1.7%(0) >832k

3000 2.8%(0) >215k 3.0%(0) >61k 2.3%(0) >257k

cut algorithm yields much smaller optimality gaps. We also notice that both methods
seem having more difficulty in solving the instances with a higher risk tolerance ε.
It appears that branching in the Benders formulation is less effective than that in the
MIP formulation (4) and thus more nodes are explored. This motivates further study
on effective ways to take advantage of the strong relaxation bound vLD2 for solving
CCSPs to optimality.

7.3 Performance on instances with binary x

Wenext consider the binary instances, i.e., with S = {0, 1}n .We compare the proposed
dual bounds and also illustrate the effectiveness of the heuristic algorithm (Algorithm
1), the scenario decomposition algorithm (Algorithm 2) with and without scenario
grouping, and the MIP formulation (4) with strengthened big-M coefficients. For
the scenario decomposition algorithm, the lower bounds are obtained by vQ . For the
scenario grouping, the number of groups K is chosen as the smallest divisor of N that
is larger than �εN� and the scenarios are divided into K groups with the same size.

Table 4 summarizes the optimality gaps of vC (M), zLP1 , zNLP
2 , vQ , vQG and vH ,

where vQG denotes the results of the grouping quantile bound. For these instances, we
report only gaps obtained with strengthened big-M coefficients. As we do not have
the optimal solutions for most of the mk-39-5 instances, we use the best known upper
bound and lower bound to estimate the lower bound and heuristic gaps, respectively.
Table 5 displays the time to compute these bounds. (Note that, the times for computing
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Table 4 Bound comparison for multi-dimensional binary knapsack instances

Instances ε N vC (M) (%) zLP1 (%) zNLP
2 (%) vQ (%) vQG (%) vH (%)

mk-20-10 0.1 100 3.5 3.5 2.3 1.6 1.1 0.0

500 3.8 3.8 2.6 1.8 1.5 0.0

1000 3.8 3.8 2.7 2.0 1.8 0.0

3000 3.8 3.8 2.7 2.0 1.7 0.0

0.2 100 4.8 4.7 2.8 2.3 2.4 0.0

500 3.9 3.9 2.2 1.5 1.6 0.0

1000 4.4 4.4 2.7 2.2 2.2 0.0

3000 4.4 4.4 2.7 2.1 2.0 0.0

mk-39-5 0.1 100 3.2 3.2 2.7 3.3 2.2 0.6

500 3.8 3.8 3.2 3.9 3.1 0.2

1000 3.8 3.8 3.3 4.1 3.3 0.1

3000 ≤4.0a ≤4.0 ≤3.5 ≤4.2 ≤3.3 ≤2.7

0.2 100 3.9 3.9 2.9 3.4 3.0 0.4

500 4.0 4.0 3.0 3.3 3.6 0.1

1000 4.2 4.1 3.2 3.8 3.9 0.1

3000 ≤4.5 ≤4.5 ≤3.5 ≤4.0 ≤3.8 ≤3.2

a A “≤” indicates instances for which the optimal value is not known, and the associated number represents
an upper bound on the true optimality gap

vC (M), zLP1 , and zNLP
2 are the times for vC (M), vLD1 , and vLD2 from Table 2 for the

continuous x case, since these are equivalent.)
In Table 4, we see that the best Lagrangian dual bounds corresponding to contin-

uous x still have at most 4% optimality gap, which demonstrates the effectiveness of
these bounds. In addition, the quantile bound, which is obtained by solving binary IP
subproblems, is somewhat stronger than any of the bounds vC (M), zLP1 , and zNLP

2 . On
the other hand, we see from Table 2 that the quantile bound vQ takes longer to calcu-
late. However, when we apply the quantile bound to the scenario grouping relaxation,
the resulting bounds vQG are comparable with the quantile bound obtained without
grouping, but take much shorter time to compute (see Table 5).

We observe in Tables 4 and 5 that for the mk-20-10 instances the heuristic performs
extremely well in terms of both quality (within 0.01% optimality gap) and solution
time. For the instances with N = 3000, the optimality gaps are not exact since we are
not able to obtain the optimal objective values due to memory limitations. However,
we can see that the bounds obtained from the heuristic methods are still quite close to
the optimal ones. Thus, the solution from the heuristic method could be treated as a
good starting point for other algorithms.

Table 6 presents the results of solving these instances to optimality using the sce-
nario decomposition algorithm (Algorithm 2) with and without scenario grouping,
and the MIP formulation (4) with strengthened big-M coefficients. We find that the
scenario grouping based decomposition method significantly outperforms the one
without grouping in terms of computational time, for the instances solved within the
time limit, and ending optimality gaps, for the remaining instances. From Table 6,
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Table 5 Computational times for computing bounds for multi-dimensional binary knapsack instances

Instance ε N vC (M) zLP1 zNLP
2 vQ vQG vH

mk-20-10 0.1 100 0.0 0.4 0.8 22.8 5.8 1.9

500 0.0 3.4 6.2 136.0 31.7 12.6

1000 0.2 11.8 21.5 282.8 62.5 47.6

3000 2.0 84.4 151.9 770.4 134.8 285.8

0.2 100 0.0 0.5 1.3 22.8 5.8 1.9

500 0.1 3.6 12.5 136.0 31.7 11.7

1000 0.2 13.7 39.0 282.8 62.5 48.1

3000 2.3 93.5 292.0 770.4 134.8 340.6

mk-39-5 0.1 100 0.0 0.5 1.2 31.8 6.7 2.7

500 0.1 3.9 9.1 157.7 35.2 12.8

1000 0.2 12.9 29.7 327.0 73.5 39.2

3000 1.1 84.8 187.5 992.0 191.7 212.3

0.2 100 0.0 0.7 2.2 31.8 6.7 2.4

500 0.1 5.3 18.7 157.7 35.2 12.0

1000 0.3 18.0 55.0 327.0 73.5 39.6

3000 2.4 122.6 382.6 992.0 191.7 220.6

Table 6 Performance of scenario decomposition and MIP on the multi-dimensional binary knapsack
instances

Instances Scenario decomposition MIP (4) With Big-M Str.

Grouping Non-grouping

Instance ε N Time Gap (%) Time Gap (%) M Time Tot. Time Gap (%)

mk-20-10 0.1 100 23.3 0.0 (5) 111.4 0.0 (5) 2.4 3.4 0.0 (5)

500 82.6 0.0 (5) 371.9 0.0 (5) 47.5 54.8 0.0 (5)

1000 119.9 0.0 (5) 972.0 0.0 (5) 185.6 207.1 0.0 (5)

3000 358.8 0.0 (5) 2253.1 0.0 (5) 1656.8 1837.4 0.0 (5)

0.2 100 52.9 0.0 (5) 173.0 0.0 (5) 2.9 3.7 0.0 (5)

500 122.9 0.0 (5) 357.1 0.0 (5) 47.4 56.8 0.0 (5)

1000 232.3 0.0 (5) 1271.8 0.0 (5) 185.7 224.4 0.0 (5)

3000 719.0 0.0 (5) 2017.3 0.0 (5) 1681.1 3281.4 1.4 (1)

mk-39-5 0.1 100 3600.0 2.0 (0) 3600.0 3.6 (0) 1.0 4.7 0.0 (5)

500 3600.0 2.4 (0) 3600.0 3.9 (0) 24.8 2619.9 0.1 (3)

1000 3600.0 2.6 (0) 3600.0 4.0 (0) 98.8 3600.0 1.5 (0)

3000 3600.0 3.0 (0) 3600.0 3.2 (0) 878.8 3600.0 2.7 (0)

0.2 100 3600.0 2.6 (0) 3600.0 3.4 (0) 1.0 15.1 0.0 (5)

500 3600.0 2.8 (0) 3600.0 3.2 (0) 24.7 3600.0 1.0 (0)

1000 3600.0 3.6 (0) 3600.0 3.8 (0) 97.3 3600.0 2.3 (0)

3000 3600.0 3.4 (0) 3600.0 3.7 (0) 878.9 3600.0 3.3 (0)
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we further observe that when the number of scenarios is small (e.g., not larger than
1000), the MIP formulation (4) with strengthened big-M parameters gives the best
performance among these three methods. However, when the number of scenarios is
larger, the MIP formulation (4) could not close the optimality gap within the time
limit, while the scenario decomposition method with grouping can still solve all of the
mk-20-10 instances within 15 minutes. We also observe that neither method is able
to solve the majority of the mk-39-5 instances. This negative result for the scenario
decomposition approach on problems with a larger x space is somewhat expected,
since only the simple “no good cuts” are employed to drive the convergence. This
motivates future work to find better ways to incorporate the strong Lagrangian dual
bound into the scenario decomposition approach.

8 Conclusion

We studied two new Lagrangian dual problems for chance-constrained stochastic pro-
grams and developed their associated primal formulationswhich can be used to exactly
compute these dual bounds for chance-constrained linear programs, or a lower bound
on them for chance-constrained mixed integer programs. We also proposed a new
heuristic method and two new exact algorithms that make use of these new bounds to
solve these problems to optimality. In our numerical study, we find that for all of our
instances, the dual bounds can be quickly computed and demonstrate that heuristic
solutions are within 4% of optimal. Our exact algorithms are able to solve more than
half of the instances to optimality, although there remain some challenging unsolved
instances. Thus, we see it as a direction for future work to investigate alternative
means for using these strong bounds to solve these problems to optimality and also
seek better ways of excluding solutions as well as optimally grouping scenarios for the
scenario decomposition approach. In addition, for chance-constrained mixed integer
programs, as opposed to using the (weaker) primal formulations as we have done in
this work, it would be interesting to explore efficient techniques for directly computing
the proposed dual bounds using, e.g., bundle methods [12,13,19].
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